Part Number Hot Search : 
C100M SP568 51102 00SER 319217A SK033 FJT1101 50PFR120
Product Description
Full Text Search
 

To Download TA1360AFG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  TA1360AFG 2005-08-18 1 toshiba bipolar linear integrated circuit silicon monolithic TA1360AFG ycbcr/ypbpr signal and sync processor for digital tv, progressive scan tv and double scan tv the TA1360AFG integrates an analog component signal (ycbcr/ypbpr) processor and sync processor in a 80-pin qfp plastic package. the ic is ideal for digital tvs, progressive tvs, and double scan tvs. the luminance block and the color difference block incorporate the high performance signal processing circuits. the sync processor block supports 525i/60, 625i/50, 525p/60, 625p/50, 1125i/50, 1125i/60, 750p/60, (750p/50), pal100 hz, ntsc120 hz, and svga/60(vesa). the TA1360AFG incorporates the i 2 c bus. the device can control various functions via the bus line. features luminance block ? black stretch circuit and dc restoration rate correction circuit ? dynamic correction circuit (gray scale correction) ? srt (lti) ? y group delay correction (shoot balance correction) ? high-bright color circuit ? color detail enhancer (cde) ? white pulse limiter (wpl) ? vsm output color difference block ? flesh color correction ? dynamic y/c correction circuit ? color srt (cti) ? color circuit ? green stretch ? blue stretch text block ? osd blending sw ? acb (only black level) ? two analog rgb inputs synchronization block ? horizontal sync (15.75 k, 28.125 k, 31.5 k, 33.75 k, 37.9 k, 45 khz) ? vertical sync (525i/p, 625i/p, 750p, 1125i/p, pal 100 hz/ntsc 120 hz ? 2- and 3-level sync separator circuit ? hd/vd input (positive and negative polarities) ? copy guard ? vertical blanking weight: 1.6 g (typ.)
TA1360AFG 2005-08-18 2 block diagram dac2 (acb pluse) h-freq sw2 afc filter h curve correction def/dac v cc sw horizontal phase i 2 cbus decoder h frequency sw clamp h duty i 2 l v dd i 2 l gnd y1 in c b1 /p b1 in c r1 /p r1 in def/dac gnd vp out y hd pbpr/ycbcr yuv convert sw h curve correction sync sepa hd in sw v integral vd in sw rgb out h c/d hvco h-afc fbp/blk h-ramp 2 f h v c/d v frequency sw acb pulse hd polarity clamp pulse ext v-blk h-blk v-blk v-clp drive clamp blk sw i k cut off rgb brightness clamp rgb contrast mixer sw/ blue back rgb matrix clamp wp blue half tone /c mute color g-y matrix relative phase/ amplitude h-bpp v-bpp uni-color color clamp pulse cp sw ext cp cp/bpp sync out bpp sw ext bpp green stretch tint y/c level comp sw iq uv converter uv iq converter flesh color clamp y2 in c b2 /p b2 in c r2 /p r2 in black stretch black peak detect dark det black level corection dynamic dc rest sharpness delay line apl detect group delay correction srt wpl clamp uni- color sub- contrast wps half tone /y mute hi-bright color yout- color peak detect sharpness control y detail control cde brightness abcl amp vsm mute vsm amp hpf osd amp clamp osd acl sw y m sw dark area det filter bph filter apl filter abcl in color limiter a nalog osd g in a nalog osd r in vsm out a nalog osd b in y s 1 (analog osd) y s 2 (analog osd) i k in analog r in r s/h g s/h b s/h analog gin analog b in y s 3 (analog rgb) y m /p- mute/bl k y/c v cc rgb gnd y/c gnd rgb v cc scl sd a cp out scp in hvco h-out fbp in vp out sync in vd in hd in r out g out b out cp2 cp2 cp1 dac2 dac1 cp2 or s/h cp1 sw 45 38 31 27 68 67 66 63 61 60 65 75 10 16 28 30 34 23 47 37 49 41 42 44 40 39 35 53 50 52 12 13 14 19 21 80 1 77 18 58 78 74 71 70 8 4 6 7 24 25 26 2 79 + + + + y b-y g-y r-y y v u light det 64 dl/ color srt vsm filter 57 blue stretch cp2 cp2 cp2 dac1 (sync out) h-freq sw1 55 light area det filter
TA1360AFG 2005-08-18 3 pin assignment 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 y s 2 (analog osd) nc r s/h nc g s/h b s/h i k in nc rgb gnd nc r out g out b out nc rgb v cc nc analog osd r in analog osd g in nc analog osd b in nc dac2 (acb pulse) analog r in light are a det filter y2 in nc c b2 /p b2 in c r2 /p r2 in nc color limiter vsm filter nc h-freq sw1 nc sync in vd in nc hd in scp in nc cp ou t nc def/dac v cc a fc filter nc hvco h-frequency sw2 y1 in nc bph filte r dark area det filte r nc nc apl filte r y/c v cc nc vsm ou t abcl in y m /p- mute/bl k y s 1 (analog osd) fbp in def/dac gnd h-out nc vp out dac1 (sync out) nc nc i 2 l v dd scl nc sd a i 2 l gnd a nalog gin y s 3 (analog rgb) a nalog bin h courve co rre c ti o n y/c gnd c r1 /p r1 in c b1 /p b1 in TA1360AFG
TA1360AFG 2005-08-18 4 pin functions pin no. pin name function interface circuit input signal/output signal 1 80 y s 2 (analog osd) y s 1 (analog osd) switches internal rgb and osd input signals. the blend ratio of internal rgb and osd signals can be adjusted according to applying voltage to pins y s 1 and y s 2. vsm output is muted when y s 1 or y s 2 pin is set to high. y s 2 y s 1 blend ratio int rgb: osd rgb l l 10:0 h l 7:3 l h 5:5 h h 0:10 0 to 0.5 v : internal 1.1 v to 1.7 v : vsm mute 2.9 v to 9 v : osd, vsm mute 2 y s 3 (analog rgb) switches internal rgb and external analog rgb input. vsm output is muted when analog rgb is selected. 0 to 0.5 v : internal 1.5 v to 9 v : analog rgb, vsm mute 3 nc this pin is not used. connect to gnd. ? ? 4 6 7 r s/h g s/h b s/h s/h (sample-and-hold) pin. in acb mode, connect 2.2- f capacitor. in cut-off mode, connect 0.01- f capacitor. dc 5 nc this pin is not used. connect to gnd. ? ? 8 i k in inputs feedback signal from crt. (blk level should be 0 to 3 v.) when acb function is not used, connect this pin to rgb v cc pin. or rgb v cc 9 nc this pin is not used. connect to gnd. ? ? 10 rgb gnd gnd pin for text/rgb block ? ? 11 nc this pin is not used. connect to gnd. ? ? 1 vp-p (typ.) r g b 0~3 v 16 8 10 1 k ? 16 10 4 6 7 500 ? 1 k ? 5 k ? 3 pf 3 v 16 2 10 300 ? 300 ? 50 k ? 16 10 1 80 300 ? 50 k ?
TA1360AFG 2005-08-18 5 pin no. pin name function interface circuit input signal/output signal 12 13 14 r out g out b out outputs r/g/b signal. recommended output amplitude: 100 ire = 2.3 vp-p 100 ire: 2.3 vp-p conditions: uni-color = max sub-cont = cent y in = 0.7 vp-p 15 nc this pin is not used. connect to gnd. ? ? 16 rgb v cc v cc pin for text/rgb block. see ?maximum ratings? about the supply voltage. ? ? 17 nc this pin is not used. connect to gnd. ? ? 18 19 21 analog osd r in analog osd g in analog osd b in inputs analog osd signal via clamp capacitor. 100 ire: 0.7 vp-p (not including sync) 20 22 nc this pin is not used. connect to gnd. ? ? 23 dac2 (acb pulse) outputs 1-bit dac or pulse over acb period. open-collector output. dc or acb pulse 24 25 26 analog r in analog g in analog b in inputs analog r/g/b signal via clamp capacitor. 100 ire: 0.7 vp-p (not including sync) 27 i 2 l gnd gnd pin for i 2 l block ? ? 16 10 1 k ? 24 25 26 1 k ? 1 k ? 16 23 10 500 ? 16 10 1 k ? 18 19 21 1 k ? 1 k ? 16 10 12 13 14 200 ? 100 ? 2.5 ma
TA1360AFG 2005-08-18 6 pin no. pin name function interface circuit input signal/output signal 28 sda sda pin for i 2 c bus ? 29 nc this pin is not used. connect to gnd. ? ? 30 scl scl pin for i 2 c bus ? 31 i 2 l v dd v dd pin for i 2 l block. connects 2 v (typ.). supply power via zener diode through resistor from pin 45. (see ?application circuit?) ? ? 32 33 nc this pin is not used. connect to gnd. ? ? 34 dac1 (sync out) outputs 1-bit dac or separated sync. open-collector output. dc or sync out 35 vp out outputs vertical pulse. applying current to this pin, performs external blanking by or-ing with internal blanking. note: changing h-position varies vp output width. use the start phase only for vp output. vp output: v-blk input current: 780 a to 1 ma 36 nc this pin is not used. connect to gnd. ? ? 45 38 35 200 ? 200 a 27 5 v 0 v start phase 45 38 34 500 ? 27 45 30 5 k ? 38 scl 2.25 v 27 45 28 27 5 k ? 38 sda 2.25 v 50 ? ack
TA1360AFG 2005-08-18 7 pin no. pin name function interface circuit input signal/output signal 37 h-out horizontal output pin. open-collector output. 38 def/dac gnd gnd pin for def/dac block ? ? 39 fbp in inputs fbp for horizontal afc. sets h-blk width. 40 h curve correction adjusts screen curve at high voltage fluctuation. input ac component of high voltage fluctuation. when not used, connect 0.01- f capacitor between this pin and gnd. dc 41 h-freq sw2 switches horizontal frequency (switch 2). leave this pin open when horizontal frequency is switched by bus controlling. controlling this pin prevails over bus control. (refer to table 1: bus control function.) when this ic is used for crt, frequency of horizontal output (pin 37) is controlled according to voltage of this pin. dc voltage that is generated by dividing resistor of def v cc (pin 45) should be used to control this pin. at bus control (horizontal frequency) : output voltage value 28 k/15 khz : dc 9 v 31 khz : dc 6 v 33 khz : dc 3 v 37 k/45 khz : dc 0 v at pin 22 control, horizontal frequency and input voltage value 0 to 1.0 v : 37 k/45 khz 2.0 v to 4.0 v : 33 khz 5.0 v to 7.0 v : 31 khz 8.0 v to 9.0 v : 28 k/15 khz 42 hvco connects ceramic oscillator for horizontal oscillation. use murata ?csbla503keczf30?. ? 43 nc this pin is not used. connect to gnd. ? ? 45 37 38 5 k ? 45 38 41 1 k ? 30 k ? 1 k ? 20 pf 60 k ? 60 k ? 60 k ? 16 k ? 15 k ? 4.5 v 7.5 v 1.5 v 40 1 k ? 65 k ? 45 38 25 k ? 50 k ? 130 k ? 6.5 v 39 45 38 500 ? 20 k ? 5 v 2.25 v 30 k ? max: 9 v h-afc threshold : 5.3 v blk threshold : 2.3 v 45 42 38 2 k ? 10 k ? 1 k ? 1 k ?
TA1360AFG 2005-08-18 8 pin no. pin name function interface circuit input signal/output signal 44 afc filter connects filter for detecting afc. dc 45 def/dac v cc v cc pin for def/dac block. see ?maximum ratings? about the supply voltage. ? ? 46 nc this pin is not used. connect to gnd. ? ? 47 cp out outputs internal clamp pulse (cp). 48 nc this pin is not used. connect to gnd. ? ? 49 scp in inputs scp from up converter. input signals are clamp pulse (cp) and black peak detection stop pulse (bpp). 2.2 v to 2.8 v : bpp 4.2 v to 9 v : cp 50 hd in inputs horizontal sync hd signal. inputs positive- or negative-polarity signals. or 51 nc this pin is not used. connect to gnd. ? ? 52 vd in inputs vertical sync vd signal. inputs positive- or negative-polarity signals. or 45 50 38 1 k ? 50 k ? threshold : 0.75 v 0 v threshold : 0.75 v 0 v 5 v 0 v 45 47 38 2.5 k ? 200 ? 45 44 38 300 ? 30 k ? 7.5 k ? 6.3 v vco 45 52 38 1 k ? 45 k ? threshold : 0.75 v 0 v threshold : 0.75 v 0 v 45 49 38 5 k ? 50 k ?
TA1360AFG 2005-08-18 9 pin no. pin name function interface circuit input signal/output signal 53 sync in inputs y signal with sync signal via clamp capacitor. white 100%: 1 v p-p or 54 nc this pin is not used. connect to gnd. ? ? 55 h-freq sw1 switches horizontal frequency (switch 1). leave this pin open when horizontal frequency is switched by bus controlling. controlling this pin prevails over bus control. (refer to table 1: bus control function.) when this ic is used for crt, connect this pin to def v cc (pin 45) or def gnd (pin 38). if it is not necessary to control this pin on crt, connect this pin directly to def vcc or def gnd on the pcb. def v cc or def gnd 56 nc this pin is not used. connect to gnd. ? ? 57 vsm filter connects vsm output filter. please connect 0.01- f capacitor between this pin and gnd. dc 58 color limiter connects filter for detecting color limit. dc 59 nc this pin is not used. connect to gnd. ? ? 45 55 38 1 k ? 50 a 50 k ? 30 k ? 45 53 38 1 k ? 1 k ? 60 k ? 1 k ? 1.6 ma 16 57 65 1 k ? 200 ? 200 ? 77 1 k ? 16 58 65 5 k ? 7 a
TA1360AFG 2005-08-18 10 pin no. pin name function interface circuit input signal/output signal 60 c r2 /p r2 in inputs c r2 /p r2 signal via clamp capacitor. 700 mvp-p700 mvp-p at 100% color bar for c r1 /p r1 61 c b2 /p b2 in inputs c b2 /p b2 signal via clamp capacitor. 700 mvp-p at 100% color bar for c b1 /p b1 63 y2 in inputs y2 signal via clamp capacitor. 1 vp-p (including sync) at 100% color bar or 62 nc this pin is not used. connect to gnd. ? ? 64 light area det filter connects filter for detecting light area. voltage of this pin controls dynamic circuit gain for light area. dc 65 y/c gnd gnd pin for y/c block ? ? 66 c r1 /p r1 in inputs c r1 /p r1 signal via clamp capacitor. 700 mvp-p700 mvp-p at 100% color bar for c r1 /p r1 67 c b1 /p b1 in inputs c b1 /p b1 signal via clamp capacitor. 700 mvp-p at 100% color bar for c b1 /p b1 68 y1 in inputs y1 signal via clamp capacitor. 1 vp-p (including sync) at 100% color bar or 69 nc this pin is not used. connect to gnd. ? ? 16 65 1 k ? 1 k ? 5 k ? 66 67 68 75 64 65 100 k ? 5 k ? 1 k ? 1 k ? 16 65 1 k ? 1 k ? 5 k ? 60 61 63
TA1360AFG 2005-08-18 11 pin no. pin name function interface circuit input signal/output signal 70 bph filter connects filter for detecting black peak. voltage of this pin controls black stretch gain. leaving y open and setting the test circuit sw 70 = c enable to monitor h/v-bpp (black-stretch-stop pulse) width. dc 71 dark area det filter connects filter for detecting dark area. voltage of this pin controls dynamic circuit gain for dark area. dc 72 73 nc this pin is not used. connect to gnd. ? ? 74 apl filter connects filter for correcting dc restoration rate. leaving this pin open enables to monitor y signal after black stretch and dynamic . ? 75 y/c v cc v cc pin for y/c block. see ?maximum ratings? about the supply voltage. ? ? 76 nc this pin is not used. connect to gnd. ? ? 77 vsm out outputs y signal for vsm that passed through hpf circuit (first differential circuit). output signals are muted according to pins 1, 2, and 80. see pin 57. ? 78 abcl in inputs abl and acl signals. sets gain and start point of abl and dynamic abl signal according to bus controlling. dc 75 70 65 1 k ? 200 ? 4 k ? 1 k ? 1 k ? 5 v 75 71 65 100 k ? 5 k ? 1 k ? 1 k ? 78 10 16 30 k ? 5 k ? 7.05 v 75 74 65 1 k ? 40 k ? 1 k ?
TA1360AFG 2005-08-18 12 pin no. pin name function interface circuit input signal/output signal 79 y m /p-mute/blk high-speed halftone switch for internal rgb signal. enables picture mute and blanking. 0 to 0.5 v : internal 1.2 v to 1.8 v : half tone 2.7 v to 4.0 v : p-mute 7 v to 9 v : blanking 16 79 10 300 ? 80 k ? 10 k ?
TA1360AFG 2005-08-18 13 bus control map write data slave address: 88h sub-add d7 d6 d5 d4 d3 d2 d1 d0 preset 00 h-freq1 h-duty yuv-sw dac1 dac2 sync-sw h-freq2 1000 0000 01 horizontal position clp-phs 1000 0000 02 acb-mode scp-sw hbp-phs1 sync sep-level test 1000 0000 03 v-blk phase vertical frequency 1000 0000 04 compression-blk phase-1 compression-blk phase-2 1000 0000 05 p-mode1 uni-color 1000 0000 06 brightness 1000 0000 07 osd-acl color 1000 0000 08 tint hbp-phs2 1000 0000 09 picture sharpness bls 1000 0000 0a rgb brightness dcrr-sw 1000 0000 0b hi brt rgb contrast 1000 0000 0c sub contrast wps yuv mode y-out 1000 0000 0d drive gain1 dr-r 1000 0000 0e drive gain2 dr-b/g 1000 0000 0f r cut off 1000 0000 10 g cut off 1000 0000 11 b cut off 1000 0000 12 r-y/b-y gain r-y/b-y phase 1000 0000 13 g-y/b-y gain g-y/b-y phase 1000 0000 14 color srt tran c freq green stretch color clt 1000 0000 15 c.d.e. y/c gain comp bl stretch gain flesh h-shift 1000 0000 16 vsm phase vsm gain apacon peak freq 1000 0000 17 dc rest point dc rest rate dc rest limit 1000 0000 18 black stretch point apl vs bsp b.l.c. b.d.l bs-area 1000 0000 19 srt-gain wpl-level 1000 0000 1a d-abl point d-abl gain bl stretch point p-mode2 1000 0000 1b abl point abl gain rgb out mode 1000 0000 1c dync gain bs-char1 static gain-1 static gain-2 1000 0000 1d osd bright osd contrast y/c-dl1 dync area 1000 0000 1e y detail control bs-char2 wp blue point 1000 0000 1f y group delay correction y/c-dl2 wp blue gain 1000 0000 read data slave address: 89h d7 d6 d5 d4 d3 d2 d1 d0 0 por ik-in rgb-out yuv-in h-out vp-out rgb-in sync-in
TA1360AFG 2005-08-18 14 bus control features write mode resister name description preset value h-freq1/2 switches horizontal oscillation frequency. (see the appendix 1) 33.75 khz h-duty switches horizontal output duty. 0: 41% 1: 47% 41% yuv-sw switches yuv input. 0: input-1 (y1/c b1 /c r1 ) 1: input-2 (y2/c b2 /c r2 ) input-1 dac 1 switches dac controlling output. 0: open (high) 1: on (low) controls 1-bit dac of open-collector when test is 00. outputs h/c-sync from pin 34 when test is 01. open dac 2 switches dac controlling output. 0: on (low), 1: open (high) controls 1-bit dac of open-collector when test is 00. outputs acb reference pulse from pin 23 when test is 01. on sync-sw switches sync input. 0: selects hd/vd input. 1: selects sync input. hd/vd horizontal position adjusts horizontal picture position (phase). 0000000: ? 12.5% 1111111: + 12.5% note: vp output width (pin 35) varies with a change of horizontal position. center clp-phs switches clamp pulse phase. 0: 0.7- s (2.5%) width, 1.1- s (3.8%) delay from hd stop phase. 1: 0.7- s (2.4%) width, 0.2- s (0.7%) delay from hd stop phase when no signal, 0.8- s (2.7%) width that is 1.2- s (4.2%) delay from fbp start phase. also switches cp phase of cp-out (pin 47). 1.1- s delay acb mode sets acb mode; sets converged reference level. 00: acb off (cutoff bus control), 01: acb on (5 ire), 10: acb on (10 ire) 11: acb on (20 ire) acb on (10 ire) scp-sw scp (sand castle pulse) switches modes. 0: internal mode 1: external input mode internal mode hbp-phs1/2 switches phase of black-stretch-detection stop pulse. hbp-phs1 = 0 and hbp-phs2 = 0: fbp 3% hbp-phs1 = 0 and hbp-phs2 = 1: fbp 8% hbp-phs1 = 1 and hbp-phs2 = 0: fbp 13% hbp-phs1 = 1 and hbp-phs2 = 1: fbp 18% leaving y open and setting the test circuit sw70 to c enable to monitor h/v-bpp (black-stretch-detection stop pulse) width through pin 70. 3% sync sep-level switches sync sep-level. 00: 16% 01: 24% 10: 32% 11: 40% (at 1125i/60) 16% test test mode: controls 1-bit dac of open-collector when test is 00. outputs h/c-sync from pin 34, and acb reference pulse from pin 23 when test is 01. do not set test to 10/11 for that is shipment test mode. 00
TA1360AFG 2005-08-18 15 resister name description preset value v-blk phase switches vertical blk stop phase. 00000: 16 h~ 11110: 46 h (1 h/step) 11111: internal h/v-blk off please set acb mode to off when internal h/v-blk is off (11111). 32 h v-frequency vertical free-run frequency: sets v pull-in range. (see appendix 2.) 1281 h compression-blk phase-1/2 compression blk phase: sets blk for upper and lower parts of screen. (see appendix 3.) center, off p-mode1/2 picture mode: sets picture mute, halftone, blue background, and y mute. (see appendix 4.) p-mute 1 uni-color unicolor adjustment: 0000000: ? 16db~ 1111111: 0db min brightness brightness adjustment: 00000000: ? 40 ire 11111111: + 40 ire center osd-acl osd-acl; 0: off 1: on on color color adjustment: 0000000: color mute, 0000001: ? 20db or more 1111111: + 4db c-mute tint tint adjustment: 0000000: ? 32 deg~ 1111111: + 32 deg 0 deg picture-sharpness sharpness adjustment: 0000000: ? 10db or more 1000000: + 10db 1111111: + 17.5db (at peak freq) center bls blue stretch correction: b-axis correction 0: off 1: on off rgb-brightness rgb brightness: 0000000; ? 20 ire~ 1111111; + 20 ire center dcrr-sw switches dc restoration rate. 0: 100% or higher 1: 100%or lower 100% or higher hi brt high-bright color: 0: off 1: on on rgb-contrast rgb contrast: 0000000: ? 16.5db 1111111: 0db min sub-contrast sub-contrast: 00000: ? 3.3db 11111: + 2.5db center wps wps level: 0: 110 ire 1: 130 ire 110 ire yuv mode y/color-difference input mode: 0: y/cb/cr, 1: y/pb/pr (remarks) y/cb/cr: itu-r bt 601 y/pb/pr: itu-r bt 709 (1125/60/2:1) y/cb/cr y-out -out gamma control: 0: off 1: on off drive gain1/2 drive gain 1/2; 0000000: ? 5db 1111111: + 3db center dr-r dr-b/g switches rgb drive gain base. (see appendix 5.) r
TA1360AFG 2005-08-18 16 resister name description preset value r/g/b cut off r/g/b cutoff: 1) at acb-off rgb-out 00000000: 1.9 v 11111111: 2.9 v 2) at acb-on sens-in 00000000: 0.5 vp-p 11111111: 1.5 vp-p center r-y/b-y gain switches r-y/b-y relative amplitude: 0000: min (0.45) 1111: max (0.9) center r-y/b-y phase switches r-y/b-y relative phase: 0000: min (90 deg) 1111: max (111.5 deg) min g-y/b-y gain switches g-y/b-y relative amplitude: 0000: min (0.25) 1111: max (0.48) center g-y/b-y phase switches g-y/b-y relative phase: 0000: min (232 deg) 1111: max (254 deg) min color srt tran color srt transient: color-difference transient improvement 00: c-srt off~ 11: max center c freq color srt peak frequency: 0: 4.5 mhz 1: 5.8 mhz 4.5 mhz green stretch green stretch: 00: off~ 11: max ( + 3db) off color color correction point 00: off, 01: 0.23 vp-p, 10: 0.40 vp-p, 11: 0.58 vp-p off clt color limiter level: 0: 1.65 vp-p, 1: 2 vp-p 1.65 vp-p cde color detail enhancer: 00: min 11: max center y/c gain comp dynamic y/c compensation: operated when luminance level is made up according to dynamic y . 00: off~ 11: max off bl stretch gain blue stretch gain: b-axis correction 00: off 11: max ( + 6.4db) off flesh flesh color: skin tone color correction 0: off 1: on (lead-in angle: 33.7 deg) off h-shift shifts a center of horizontal picture position (phase): 0: off 1: on fbp shifts 6.7% against hd off vsm-phase vsm phase: 000: ? 37.5 ns 101: normal 111: + 15 ns center vsm gain vsm gain: 000: off 001: 0 db~ 111: + 16db (vsm gain is limitted 1.4 vp-p) off apacon peak f 0 apacon peak frequency: 00: 13.5 mhz 01: 9.5 mhz 10: 7.2 mhz 11: 4.5 mhz 13.5 mhz dc rest point dc restoration rate correction point: 000: 0% 111: 49% center dc rest rate dc restoration correction rate: 000: 100% 111: 135% (70%) min dc rest limit dc restoration rate correction limit point: 00: 67% 01: 77 10: 80% 11: 80% min
TA1360AFG 2005-08-18 17 resister name description preset value black stretch point black stretch start point 1: 000: off 001: 25 ire~ 111: 55 ire center apl vs bsp black stretch start point 2: 00: 0 ire 11: 46 ire up (at apl 100%) 0 ire b.l.c black level automatic correction: up to 6.5 ire. (black stretch takes priority.) 0: off 1: on off b.d.l. switches black detection level: 0: 3 ire 1: 0 ire 3 ire bs-area black stretch area reinforcement: 0: on 1: off on srt-gain srt gain; y transient improvement (lti) 00000: min 11111: max center wpl-level white letters improvement amplitude; 000: min (21 ire) ~ 110: max (102 ire) 111: off min d-abl point dynamic abl detection voltage 00: min 11: max center d-abl gain dynamic abl sensitivity 00: min 11: max min bl stretch point blue stretch point; b-axis correction 00: min (28 ire) 11: max (60 ire) min abl point abl detection voltage 000: min 111: max center abl gain abl sensitivity 000: min 111: max min rgb-out mode rgb output mode; rgb output mode sw for test and adjustment 00: normal 01: r only 10: g only 11: b only normal dync gain dynamic y gain vs dark area; dynamic -correction according to dark area. 00:min~ 11: max (maximum gain is + 6db included static y gain for dark area.) center bs-char1/2 black stretch characteristic swich bs-char1 = 0 and bs-char2 = 0: off bs-char1 = 0 and bs-char2 = 1: min bs-char1 = 1 and bs-char2 = 0: mid bs-char1 = 1 and bs-char2 = 1: max off static gain-1 static y dark area gain; correction for dark area 000: off 001: min ( ? 5db) ~ 11: max ( + 2.4db) note: when static gain-1 is 000(off), set dync gain to min (00), static gain-2 to off (11), and dync area to min (000). off static gain-2 static y light area gain; correction for light area 00: max ( ? 8.8db)~ 11: off when 00~10 is set, light area static y and light dynamic y according to light area is operated. max osd bright osd brightness: 00: 5 ire 01: 0 ire 10: ? 5 ire 11: ? 10 ire ? 5 ire osd-contrast osd contrast: 00: min ( ? 9.5db) 11: max (0db) min
TA1360AFG 2005-08-18 18 resister name description preset value y/c dl1/2 adjusts y/c phase; adjusts the phase y before passing through matrix circuit. y/c dl2 = 0 and y/c dl1 = 0: ? 10 ns, y/c dl2 = 0 and y/c dl1 = 1: ? 5 ns y/c dl2 = 1 and y/c dl1 = 0: 0 ns, y/c dl2 = 1 and y/c dl1 = 1: + 5 ns ? 10 ns dync area dynamic dark area detection sensitivity; switches detection sensitivity of dynamic y of dark area. 000: min~ 111: max min y detail control controls y detail; corrects sharpness of 5.0-mhz peak frequency. 0000:min (trap) 1111: max + 6db center wp blue point white peak blue point; 000: off 001: min (42 ire) ~ 111: max (106 ire) off y-group delay correction y group delay correction; shoot balance correction. 0000: pre-shoot gain is lowered. (overshoot gain is raised.) 1111: overshoot gain is lowered. (pre-shoot gain is raised.) center wp blue gain white peak blue gain. 000: min ( + 3db) 111: max ( + 10db) min
TA1360AFG 2005-08-18 19 appendix 1: horizontal frequency pin voltages (v) bus data pin 55 pin 41 00-d0 00-d7 00-d6 h-frequency (khz) def v cc (8.0~9.0) 0 0 0 28.125 6.0 (5.0~7.0) 0 0 1 31.5 3.0 (2.0~4.0) 0 1 0 33.75 def gnd (0~1.0) def gnd (0~1.0) 0 1 1 37.9 def v cc (8.0~9.0) 1 0 0 15.75 6.0 (5.0~7.0) 1 0 1 31.5 3.0 (2.0~4.0) 1 1 0 33.75 def v cc (8.0~9.0) def gnd (0~1.0) 1 1 1 45 note 1: controlling pins prevails over bus control. when the ta1360f is used for crt, control horizontal oscillation frequency by pins 41 and 55. (see the pin descriptions for details.) note 2: horizontal output frequency may not be switched at once but may takes two steps if switching pins 41 and 55 is controlled at the same time. switching horizontal output frequency may cause deterioration of the horizontal transistor. thus, be sure to take account of applications, included software. appendix 2; vertical frequency v-bpp data v pull-in range start phase stop phase example of format/v (h)-frequency 000 48~1281 h 1100 h 1125p/30 hz (33.75 khz) 001 48~849 h 730 h 750p/60 hz (45 khz) (750p/50hz(37.5 khz)) 010 48~725 h 600 h 625p/50 hz (31.5 khz) svga/60 hz(37.9 khz) 011 48~660 h 545 h 1125i/50 hz (28.125 khz) 1125i/60 hz (33.75 khz) 100 48~613 h 500 h 525p/60 hz (31.5 khz) 101 48~363 h 290 h pal/secam/50 hz (15.625 khz), 100 hz (31.5 khz) 110 48~307 h 240 h v-blk p. (c.blk p.) + 20 h ntsc/60 hz (15.734 khz), 120 hz (31.5 khz) 111 vp-out hi ? ? ?
TA1360AFG 2005-08-18 20 appendix 3; compression-blk phase v-frequency phase-1 (start phase) * phase-2 (stop phase) 000 1088 h~1116 h 001 720 h~748 h 010 592 h~620 h 011 528 h~556 h 100 488 h~516 h 101 280 h~308 h 110 224 h~252 h 50~78 h (0000: c-blk2 off) 111 c-blk off * : c-blk1 = 1111: c-blk1 off appendix 4; p-mode 05-d7 1a-d1 1a-d0 mode description 0 0 0 normal 1 p-mute and halftone the main signal by pin y m . insert analog rgb-in by ys3, and osd-in by ys1/ys2. analog rgb-in > p-mute 0 0 1 y-mute full-screen-mute process is executed on y of main signal by bus. insert analog rgb-in by ys3, and osd-in by ys1/ys2. analog rgb-in > p-mute 0 1 0 y m 1 full-screen-halftone process is executed on main signal by bus. insert p-mute by pin y m , and analog rgb-in by ys3. ys1/ys2 blends osd-in and main halftone signal. analog rgb-in > p-mute 0 1 1 bb blue background process is executed on main signal by bus. insert p-mute by pin y m , analog rgb-in by ys3, and osd-in by ys1/ys2 analog rgb-in > p-mute 1 0 0 p-mute 1 full-screen-mute process is executed on main signal by bus. insert analog rgb-in by ys3, and osd-in by ys1/ys2. analog rgb-in > p-mute 1 0 1 y m 2 full-screen-halftone process is executed on main signal by bus. insert p-mute by pin y m , and analog rgb-in by ys3. ys1/ys2 blends osd-in and main halftone signal p-mute > analog rgb-in 1 1 0 p-mute 2 full-screen-mute process is executed on main signal and analog rgb-in by bus. insert osd-in by ys1/ys2. p-mute > analog rgb-in 1 1 1 normal 2 p-mute and halftone process is executed on the main signal by pin y m . analog rgb-in is inserted by ys3, and osd-in by ys1/ys2. p-mute > analog rgb-in output priority; (000)~(100): main signal < bb < p-mute < rgb-in < osd-in (101)~(111): main signal < bb < rgb-in < p-mute < osd-in
TA1360AFG 2005-08-18 21 appendix 5; dr-r, dr-b/g dr-r dr-b/g reference axis drive gain1 drive gain2 0 0 r g b 0 1 r g b 1 0 g r b 1 1 b g r read function signal function por power-on reset: 0: resister preset 1: normal after power on, 0 is returned at first read; 1, at second and subsequent reads. ik-in detects ik input; detects input through pin 8. 0: ng (no signal) 1: ok (signal detected) rgb-out detects rgb-out self-check; detects output of pins 12, 13, 14. 0: ng (no signal) 1: ok (signal detected) detects signal when all three outputs hsve signals. small signals are not detected. yuv-in detects yuv-in self-check; detects input of pins 60, 61 63 or pins 66, 67, 68. 0: ng (no signal) 1: ok (signal detected) detects signal when all three inputs are ac signals. small signals or signals like dc voltage are not detected. h-out detects h-out self-check; detects output of pin 37. 0: ng (no signal) 1: ok (signal detected) vp-out detects vp-out self-check; detects output of pin 35. 0: ng (no signal) 1: ok (signal detected) rgb-in detects rgb-in self-check; detects input of pins 24, 25, 26. 0: ng (no signal) 1: ok (signal detected) detects signal when all three inputs are ac signals. small signals or signals like dc voltage are not detected. sync-in detects sync-in self-check; detects input of pin 53. 0: ng (no signal), 1: ok (signal detected)
TA1360AFG 2005-08-18 22 how to transmit/receive via i 2 c bus slave address: 88h a6 a5 a4 a3 a2 a1 a0 w/r 1 0 0 0 1 0 0 0/1 start and stop conditions bit transfer acknowledgement sda scl s start condition p stop condition sda scl sda must not be changed sda may be changed sda from transmitter low impedance only at bit 9 clock pulse for acknowledgement s high impedance at bit 9 1 8 9 sda from receiver scl from master
TA1360AFG 2005-08-18 23 data transmit format 1 data transmit format 2 data receive format to receive data, the master transmitter changes to a receiver immediately after the first acknowledgement. the slave receiver changes to a transmitter. the stop condition is always created by the master. optional data transmit format in this way, sub addresses are automatically incremented from the specified sub address and data are set. i 2 c bus conditions characteristics symbol min typ. max unit low level input voltage v il 0 ? 1.0 v high level input voltage v ih 1.8 ? vcc v low level output voltage at 3 ma sink current v ol1 0 ? 0.4 v input current each i/o pin with an input voltage between 0.1 vdd and 0.9 vdd i i ? 10 ? 10 a capacitance for each i/o pin c i ? ? 10 pf scl clock frequency f scl 0 ? 100 khz hold time start condition t hd;sta 4.0 ? ? s low period of scl clock t low 4.7 ? ? s high period of scl clock t high 4.0 ? ? s set-up time for a repeated start condition t su;sta 4.7 ? ? s data hold time t hd;dat 350 ? ? ns data set-up time t su;dat 250 ? ? ns set-up time for stop condition t su;sto 4.0 ? ? s bus free time between a stop and start condition t buf 4.7 ? ? s s slave address 0 a transmit data 1 a sub address a transmit data n a sub address a p ?????? ?????? s slave address 1 a a receive data p 7 bit msb 8 bit msb s slave address a transmit data n ???? transmit data 1 a p 7 bit msb 8 bit msb 0 sub address 7 bit msb a 1 8 bit msb s slave address 0 a transmit data a sub address a p 7 bit msb s: start condition 8 bit msb a: acknowledgement 9 bit msb p: stop condition
TA1360AFG 2005-08-18 24 maximum ratings (ta = 25c) characteristics symbol rating unit power supply voltage (pins 16, 45, 75) v ccmax9 12 v power supply voltage (pin 31) v ccmax2 2.5 v input pin voltage v in gnd ? 0.3 to v cc + 0.3 v power dissipation p d (note 3) 2604 mw power dissipation reduction rate depending on temperature 1/ ja 20.8 mw/c operating temperature t opr ? 20 to 65 ? 20 to 70 c storage temperature t stg ? 55 to 150 c min 8.7 8.5 typ. 9.0 8.8 supply voltage (pins 16, 45 and 75) max 9.3 9.1 v note 3: see the following figure a. (with device mounted on a pcb whose dimensions are 114.3 mm 76.2 mm 1.6 mm and whose surface is 20% copper. mount the device on a pcb of at least these dimensions and whose surface is at least 20% copper.) when using in ? 25 to 70c of operating temperature, set the ic?s power supply voltage (pins 16, 45, 75) to 8.8 v ( 0.3 v). when designing a set, make sure that the ic can radiate heat because the TA1360AFG has low thermal capacity. note that the power dissipation varies greatly according to conditions of a board. figure a power dissipation reduction curve 2604 0 150 25 65 1771 power dissipation p d (mw) ambient temperature ta (c) 0 1667 70
TA1360AFG 2005-08-18 25 note 4: power supply sequence at power-on, power should be supplied to the power supply pins according to the following sequence: 1. pin 31 (i 2 l vdd) 2. pin 45 (def/dac v cc ) 3. pins 16 and 75 (yc v cc /rgb v cc ) supply power to pin 37 via zener diode through resistor from pin 45. (see ?application circuit?.) bus preset value is become undefined and caused malfunction of the ic unless supplying power to all supply pins or follow the power supply sequence described above. when the frequency of horizontal output (pin 37) became undefined, horizontal transistor may be damaged. when the ta1360f is used for crt, control horizontal oscillation frequency by pins 41 and 55. figure b timing chart that indicates the timing from power-on till horizontal output. (at ta = 25 c ) t i 2 l v dd logic operation 1.3 v (typ.) por release voltage (bus operation) 4.6 v (typ.) horizontal output 6.0 v (typ.) v def/dac v cc
TA1360AFG 2005-08-18 26 operating conditions characteristics description min typ. max unit t opr = ? 20 to 65c (note 5) 8.7 9.0 9.3 pin 16, 45, 75 t opr = ? 20 to 70c (note 5) 8.5 8.8 9.1 supply voltage (v cc ) pin 31 1.8 2.0 2.2 v y input level pins 63, 68: 100% color bar, including sync (picture period amplitude, 0.7 vp-p) ? 1.0 ? color-difference input level pins 60, 61 66, 67: 100% color bar, not including sync ? 0.7 ? vp-p y input frequency pins 63, 68 0 ? 30 mhz color-difference input frequency pins 60, 61, 66, 67 0 ? 15 mhz hd/vd input level pins 50, 52 2.0 5.0 v cc v sync input level pin 53: 100% color bar, including sync 0.9 1.0 1.1 vp-p cp 4.2 5.0 v cc scp input level pin 49 bpp 2.2 2.5 2.8 at 28 k/31 k/33 k/37 khz 0 0 1.0 pin 55 at 15 k/31 k/33 k/45 khz 8.0 v cc v cc 28.125 khz or 15.75 khz 8.0 v cc v cc 31.5 khz 5.0 6.0 7.0 33.75 khz 2.0 3.0 4.0 horizontal frequency switching voltage pin 41 37.9 khz or 45 khz 0 0 1.0 h-afc 6.5 7.0 v cc fbp input level pin 39 h-blk 3.0 3.5 4.0 v fbp input width pin 39 0.16 ? 0.3 h h-out input current pin 37 ? 9.0 15.0 dac input current pins 23, 34 ? 0.3 1.0 ma scl/sda pull-up voltage pins 28, 30 3.3 5.0 v cc v sda input current pin 28 ? ? 2 ma analog rgb input level pins 24, 25, 26: white 100% ? 0.7 ? analog osd input level pins 18, 19, 21: white 100% ? 0.7 ? vp-p y s 3 switching voltage pin 2 1.5 5.0 v cc osd 2.9 5.0 v cc y s 1/2 switching voltage pins 1, 80 vsm mute 1.1 1.5 1.7 blk 7.0 v cc v cc p-mute 2.7 3.5 4.0 y m switching voltage pin 79 half tone 1.2 1.5 1.8 v external v-blk input current pin 35 0.78 ? 1 ma note 5: see ?maximum ratings? about t opr . electrical characteristics ( unless otherwise specified, v cc = 9 v/2 v, ta = 25c) current dissipation pin name symbol test circuit min typ. max unit def/dac v cc (9 v) i cc1 ? 19.2 24.0 28.2 rgb v cc (9 v) i cc2 ? 48.8 61.0 67.8 i 2 l v dd (2 v) i cc3 ? 21.3 25.0 29.4 y/c v cc (9 v) i cc4 ? 36.8 46.0 51.1 ma
TA1360AFG 2005-08-18 27 pin voltage test condition (1) bus = preset (2) sw71 = b, sw70 = b, sw68 = c, sw67 = b, sw66 = b, sw64 = b, sw63 = b, sw60 to 61 = b, sw53 = b, sw44 = on, sw40 = b, sw39 = a, sw37 = a, sw24 to 26 = a, sw21 = a, sw18~19 = a, sw77 = off, sw74 = on pin no. pin name symbol test circuit min typ. max unit 1 y s 2 v 1 ? ? 0.1 0.2 2 y s 3 v 2 ? ? 0.1 0.2 4 r s/h v 4 ? 4.2 5.2 6.2 6 g s/h v 6 ? 4.2 5.2 6.2 7 b s/h v 7 ? 4.2 5.2 6.2 18 analog osd r in v 18 ? 3.65 3.95 4.25 19 analog osd g in v 19 ? 3.65 3.95 4.25 21 analog osd b in v 21 ? 3.65 3.95 4.25 24 analog r in v 24 ? 3.65 3.95 4.25 25 analog g in v 25 ? 3.65 3.95 4.25 26 analog b in v 26 ? 3.65 3.95 4.25 40 h curve correction v 40 ? 2.2 2.5 2.8 42 hvco v 42 ? 4.4 5.0 5.6 44 afc filter v 44 ? 5.4 6.2 7.0 49 cp in v 49 ? ? 0 0.3 50 hd in v 50 ? ? 0 0.3 52 vd in v 52 ? ? 0 0.3 53 sync in v 53 ? 1.8 2.1 2.4 57 vsm filter v 57 ? 7.5 7.7 7.9 58 color limiter v 58 ? 6.65 6.9 7.15 60 cr/pr2 in v 60 ? 4.7 5.0 5.3 61 cb/pb2 in v 61 ? 4.7 5.0 5.3 63 y2 in v 63 ? 4.7 5.0 5.3 64 light area det filter v 64 ? ? 0.09 0.15 66 cr/pr1 in v 66 ? 4.7 5.0 5.3 67 cb/pb1 in v 67 ? 4.7 5.0 5.3 68 y1 in v 68 ? 4.7 5.0 5.3 70 bph filter v 70 ? 5.5 5.8 6.1 71 dark area det filter v 71 ? ? 0.09 0.15 74 apl filter v 74 ? 4.8 5.0 5.2 77 vsm out v 77 ? 4.1 4.3 4.5 78 abcl in v 78 ? 6.1 6.35 6.6 79 y m v 79 ? ? 0.1 0.2 80 y s 1 v 80 ? ? 0.1 0.2 v
TA1360AFG 2005-08-18 28 picture quality (sharpness) block characteristics symbol test circuit test condition min typ. max unit y input dynamic range d ry ? ? 0.7 1.0 1.5 vp-p v b ? ? 15 10 15 black detection level shift v b3 ? (note p01) 35 45 55 mv black stretch amp maximum gain g bs ? (note p02) 2.4 2.8 3.2 db p bst1 ? 20 25 35 black stretch start point 1 p bst2 ? (note p03) 50 55 60 ire p bs1 ? 0 5 10 black stretch start point 2 p bs2 ? (note p04) 14 21 30 ire p bsc1 ? 26 28 30 p bsc2 ? ? 8 ? 6 ? 4 p bsc3 ? 26 28 30 p bsc4 ? ? 5.5 ? 3 ? 1 p bsc5 ? 26 28 30 black stretch characteristic switch p bsc6 ? (note p05) ? 3.5 ? 2 ? 0.5 ire black stretch area reinforcement current ibsa ? (note p06) 13 18 23 a dv 01 ? 80 120 160 dv 10 ? 240 280 320 d.abl detection voltage dv 11 ? (note p07) 380 420 460 mv s damin ? ? 0.01 0.02 d.abl sensitivity s damax ? (note p08) 0.25 0.28 0.31 v/v black level correction blc ? (note p09) 4.5 6.5 8.5 ire dark area y correction point p dgp ? (note p10) 25 28 33 ire dark area dynamic y gain g ddgmax ? (note p11) 5.5 6 6.5 db g dsgmin ? ? 6.5 ? 5 ? 4 dark area static y gain g dsgmax ? (note p12) 2 2.4 2.6 db light area y correction point lpg ? (note p13) 64 74 80 ire light area dynamic y gain gldg ? (note p14) 1.1 1.7 2.3 db g lsgmin ? 0.3 0.6 0.9 light area static y gain g lsgmax ? (note p15) 1.4 1.7 2.3 db damin ? 0.25 0.3 0.37 dacen ? 0.88 0.98 1.08 dark area detection sensitivity damax ? (note p16) 0.95 1.05 1.15 v adt 100 ? 0.9 1.1 1.2 adt 135 ? 1.2 1.35 1.5 dc restoration rate adt 65 ? (note p17) 0.55 0.70 0.85 times v dt0 ? ? 5 0 5 dc restoration point v dt1 ? (note p18) 47 49 55 % p dtl60 ? 64 67 70 p dtl75 ? 74 77 80 p dtl87 ? 74 80 82 dc restoration limit p dtl100 ? (note p19) 74 80 82 %
TA1360AFG 2005-08-18 29 characteristics symbol test circuit test condition min typ. max unit f ap00 ? 10.5 13.5 17 f ap01 ? 7 9.5 12 f ap10 ? 5 7.2 7.8 sharpness control peak frequency f ap11 ? ? 3.5 4.5 6.3 mhz dc fluctuation at switching sharpness control peak frequency vrdc ? (note p20) ? 0.01 0.02 v g max00 ? 15 17.5 19 g min00 ? ? 4 ? 0.6 2.5 g max01 ? 15 17.5 19 g min01 ? ? 5 ? 0.3 2.5 g max10 ? 15 17.5 19 g min10 ? ? 7 ? 2.5 1.5 g max11 ? 15 17.5 19 sharpness control range g min11 ? (note p21) ? 12 ? 5 0 db g cen00 ? 7 10 13 g cen01 ? 7 10 13 g cen10 ? 7 10 13 sharpness control center characteristic g cen11 ? (note p22) 7 10 13 db t srt00 ? 0.9 1.6 2.7 t srt01 ? 3.5 4.8 7.1 t srt10 ? 6.7 8.5 11.3 2t pulse response srt control t srt11 ? (note p23) 11.5 12.5 15.5 db vsm peak frequency f vsm ? ? 19 19.5 25.5 mhz g v000 ? ? ? 40 ? 35 g v001 ? ? 2 ? 1.2 ? 0.4 g v010 ? 3.7 4.6 5.5 g v011 ? 7.1 8.2 9.3 g v100 ? 8.9 10.5 12.1 g v101 ? 11.4 12.6 13.8 g v110 ? 13.5 14.4 15.3 vsm gain g v111 ? (note p24) 14.8 15.7 16.6 db v sr1 ? 0.62 0.78 0.85 v sr2 ? 0.62 0.78 0.85 vsm mute threshold voltage v sr580 ? pins 1, 2, 80 0.62 0.78 0.85 v v lu ? 0.55 0.66 0.75 vsm limit v ld ? (note p25) 0.55 0.66 0.75 vp-p y input to r output delay time t yr ? ? 110 125 140 ns ydla ? 3 5 10 ydlb ? 7 10 15 y delay time switch ydlc ? (note p26) 10 15 25 ns g amin ? ? 4 ? 2.5 ? 1 g bmin ? 2.5 3 3.5 g amax ? 1 1.7 2.4 y group delay correction g bmax ? (note p27) ? 5 ? 4 ? 2 db
TA1360AFG 2005-08-18 30 characteristics symbol test circuit test condition min typ. max unit g cde00 ? 9 10 11 g cde01 ? 9 10 11 g cde10 ? 9 10 11 color detail enhancer g cde11 ? (note p28) 9 10 11 db y detail frequency f yd ? ? 4 5 6 mhz g ydmax ? 11 13 15 g ydcen ? 8 10 12 y detail control range g ydmin ? (note p29) 3 5 7 db
TA1360AFG 2005-08-18 31 color difference block 1: yuv input and matrix characteristics symbol test circuit test condition min typ. max unit d rb ? 0.7 0.9 1.0 color difference input dynamic range d rr ? ? 0.7 0.9 1.0 vp-p t rmax ? 25 29 33 t rmin ? ? 37 ? 33 ? 29 t bmax ? 27 31 35 color difference tint control characteristic t bmin ? ? ? 36 ? 32 ? 28 f b00 ? 3.6 4.5 5.4 f b01 ? 4.6 5.8 7.0 f r00 ? 3.6 4.5 5.4 color srt peak frequency f r01 ? ? 4.6 5.8 7.0 mhz gs b00cen ? 1.5 2.8 4.1 gs b00max ? 2.9 4.2 5.5 gs b01cen ? 2.0 3.3 4.6 gs b01max ? 3.5 4.8 6.1 gs r00cen ? 3.4 4.7 6.0 gs r00max ? 5.4 6.7 7.0 gs r01cen ? 3.1 4.4 5.7 color srt gain gs r01max ? (note s01) 5.2 6.5 7.8 db cb1 input to b output delay time t b ? ? 130 155 185 ns cr1 input to r output delay time t r ? ? 130 155 185 ns gc bdy1 ? 1.8 2.25 2.7 gc bdy2 ? ? 1.65 ? 1.2 ? 0.75 gc rdy1 ? 1.8 2.25 2.7 dynamic y/c compensation gc rdy2 ? (note s02) ? 1.65 ? 1.2 ? 0.75 db g y00 ? 2.4 3.4 4.4 g y01 ? 2.4 3.4 4.4 g cbb ? 9.5 11.0 12.5 g pbb ? 9.9 11.4 12.9 g pbr ? ? 18.0 ? 16.0 ? 14.0 g crr ? 9.5 11.0 12.5 g prb ? ? 15.0 ? 13.5 ? 12.0 yuv gain g prr ? (note s03) 10.0 11.5 13.0 db
TA1360AFG 2005-08-18 32 characteristics symbol test circuit test condition min typ. max unit gra01 ? 0.98 1 1.02 gra10 ? 0.95 1 1.05 gra11 ? 0.93 1 1.07 grb01 ? 1.01 1.05 1.10 grb10 ? 1.05 1.1 1.15 grb11 ? 1.12 1.19 1.26 grc01 ? 1.10 1.14 1.18 grc10 ? 1.23 1.27 1.31 grc11 ? 1.35 1.42 1.49 grd01 ? 1.09 1.13 1.17 grd10 ? 1.21 1.25 1.29 grd11 ? 1.32 1.39 1.46 gre01 ? 0.98 1 1.02 gre10 ? 0.95 1 1.05 green stretch gre11 ? (note s04) 0.93 1 1.07 times
TA1360AFG 2005-08-18 33 color difference block 2 characteristics symbol test circuit test condition min typ. max unit color difference contrast adjustment characteristic ? v ucy ? (note a01) 14.5 16.0 17.5 db ? v ccy + ? 3.0 4.0 5.0 color adjustment characteristic ? vccy ? ? (note a02) ? 35 ? 22 ? 17 db rmax ? 109 111.5 114 rcnt ? 98.5 101 103.5 rmin ? 88 90 92 v r /v bmax ? 0.86 0.90 0.94 v r /v bcnt ? 0.65 0.69 0.73 r-y relative phase and amplitude v r /v bmin ? ? 0.42 0.45 0.49 times gmax ? 251 254 257 gcnt ? 244 247 250 gmin ? 229 232 235 v g /v bmax ? 0.43 0.48 0.53 v g /v bcnt ? 0.33 0.37 0.41 g-y relative phase and amplitude v g /v bmin ? ? 0.22 0.25 0.28 times ght ry ? 0.47 0.50 0.53 ght gy ? 0.47 0.50 0.53 color difference halftone characteristic ght by ? (note a03) 0.47 0.50 0.53 times v 1 ? 0.09 0.23 0.37 v 2 ? 0.26 0.40 0.54 v 3 ? 0.44 0.58 0.72 vp-p color characteristic ? ? (note a04) 0.60 0.70 0.80 ? clt 0 ? 1.45 1.65 1.85 color limiter characteristic clt 1 ? (note a05) 1.80 2.00 2.20 vp-p high-bright color gain hbc 1 ? (note a06) 0.02 0.04 0.06 times
TA1360AFG 2005-08-18 34 text block characteristics symbol test circuit test condition min typ. max unit g r ? 3.08 3.45 3.90 g g ? 3.08 3.45 3.90 ac gain (y1in~r/g/b out) g b ? (note t01) 3.08 3.45 3.90 times g g/r ? 0.94 1.00 1.06 ac gain axis difference g b/r ? ? 0.94 1.00 1.06 g fr ? 30 60 ? g fg ? 30 60 ? frequency characteristic (y1in~r/g/b out) g fb ? at ? 3db, sharpness characteristic is flat 30 60 ? mhz g fcb ? 10 12.5 ? frequency characteristic (cb1/cr1in~r/g/b out) g fcr ? ? 10 12.5 ? mhz g fy1 ? 2.05 2.30 2.59 g fy15 ? 2.40 2.75 3.10 y frequency characteristic 2 (y in~r/g/b out) g fy30 ? 1.85 2.20 2.65 vp-p v ydc1 ? ? 0.02 0.05 v ydc15 ? ? 0.02 0.05 difference among dc center voltages of rgb output amplitudes v ydc30 ? (note t02) ? 0.05 0.10 v unicolor adjustment characteristic ? v u ? (note t03) 15.0 16.0 17.0 db v brmax ? 4.10 4.45 4.80 v brcnt ? 3.05 3.40 3.75 brightness adjustment characteristic v brmin ? (note t04) 1.95 2.30 2.65 v v wps1 ? 2.20 2.32 2.44 white peak slice level v wps2 ? (note t05) 2.59 2.74 2.89 vp-p black peak slice level v bps ? (note t06) 1.15 1.35 1.45 v n 12 ? ? ? 52 ? 46 n 13 ? ? ? 52 ? 46 rgb output s/n n 14 ? (note t07) ? ? 52 ? 46 db g ht1 ? 0.45 0.50 0.55 halftone characteristic g ht2 ? (note t08) 0.45 0.50 0.55 times halftone on voltage v ht ? pin 79 0.65 0.85 1.05 v v vr ? 0.30 0.80 1.30 v vg ? 0.30 0.80 1.30 v-blk pulse output level v vb ? ? 0.30 0.80 1.30 v v hr ? 0.30 0.80 1.30 v hg ? 0.30 0.80 1.30 h-blk pulse output level v hb ? ? 0.30 0.80 1.30 v td on ? ? 0.00 0.30 blk pulse delay time td off ? (note t09) ? 0.08 0.30 s ? v su + ? 1.95 2.45 2.95 sub-contrast variable range ? vsu ? ? ? ? 3.8 ? 3.3 ? 2.8 db cut + ? 0.42 0.47 0.52 cut-off voltage variable range cut ? ? ? 0.42 0.47 0.52 v
TA1360AFG 2005-08-18 35 characteristics symbol test circuit test condition min typ. max unit ? v #12 ? 2.05 2.30 2.55 ? v #13 ? 2.05 2.30 2.55 rgb output voltage ? v #14 ? ? 2.05 2.30 2.55 v rgb output voltage 3-axis difference ? v out ? ? ? 0 150 mv dr r1 + ? 2.5 3.0 3.5 dr r1 ? ? ? 5.5 ? 5.0 ? 4.5 dr r2 + ? 2.5 3.0 3.5 dr r2 ? ? ? 5.5 ? 5.0 ? 4.5 dr g1 + ? 2.5 3.0 3.5 dr g1 ? ? ? 5.5 ? 5.0 ? 4.5 dr g2 + ? 2.5 3.0 3.5 dr g2 ? ? ? 5.5 ? 5.0 ? 4.5 dr g3 + ? 2.5 3.0 3.5 dr g3 ? ? ? 5.5 ? 5.0 ? 4.5 dr b1 + ? 2.5 3.0 3.5 dr b1 ? ? ? 5.5 ? 5.0 ? 4.5 dr b2 + ? 2.5 3.0 3.5 dr b2 ? ? ? 5.5 ? 5.0 ? 4.5 dr b3 + ? 2.5 3.0 3.5 drive adjustment variable range dr b3 ? ? (note t10) ? 5.5 ? 5.0 ? 4.5 db mu rd ? 1.7 1.85 2.0 mu gd ? 1.7 1.85 2.0 output voltage at p-mute mu bd ? ? 1.7 1.85 2.0 v p-mute on voltage v mute ? pin 79 1.90 2.15 2.40 v bb r ? 1.0 1.2 1.4 bb g ? 1.0 1.2 1.4 v output voltage at blue background bb b ? ? 1.1 1.25 1.4 vp-p input impedance of #78 zin ? (note t11) 24 30 36 k ? acl 1 ? ? 6.5 ? 4.5 ? 2.5 acl characteristic acl 2 ? (note t12) ? 15.0 ? 13.5 ? 11.0 db abl p1 ? ? 0.21 ? 0.16 ? 0.11 abl p2 ? ? 0.28 ? 0.23 ? 0.18 abl p3 ? ? 0.37 ? 0.32 ? 0.27 abl p4 ? ? 0.45 ? 0.40 ? 0.35 abl p5 ? ? 0.54 ? 0.49 ? 0.44 abl p6 ? ? 0.62 ? 0.57 ? 0.52 abl p7 ? ? 0.70 ? 0.65 ? 0.60 abl point abl p8 ? (note t13) ? 0.75 ? 0.70 ? 0.65 v
TA1360AFG 2005-08-18 36 characteristics symbol test circuit test condition min typ. max unit abl g1 ? ? 0.06 ? 0.02 0.00 abl g2 ? ? 0.17 ? 0.12 ? 0.07 abl g3 ? ? 0.34 ? 0.29 ? 0.24 abl g4 ? ? 0.52 ? 0.47 ? 0.42 abl g5 ? ? 0.68 ? 0.63 ? 0.59 abl g6 ? ? 0.85 ? 0.80 ? 0.75 abl g7 ? ? 1.01 ? 0.96 ? 0.91 abl gain abl g8 ? (note t14) ? 1.09 ? 1.04 ? 0.99 v v 12r ? 2.15 2.40 2.65 v 13r ? 0.30 0.80 1.30 v 14r ? 0.30 0.80 1.30 v 12g ? 0.30 0.80 1.30 v 13g ? 2.15 2.40 2.65 v 14g ? 0.30 0.80 1.30 v 12b ? 0.30 0.80 1.30 v 13b ? 0.30 0.80 1.30 rgb output mode v 14b ? (note t15) 2.15 2.40 2.65 v 1 ? 56 66 76 2 ? 72 82 92 ire ? 1 ? 0.49 1.24 1.99 ? 2 ? ? 1.67 ? 0.92 ? 0.17 y-out characteristic ? 3 ? (note t16) ? 4.59 ? 3.84 ? 3.09 db bs pmin ? 37 42 47 bs pcnt ? 72 77 82 bs pmax ? 101 106 111 ire bs gmin ? 2.1 3.1 4.1 bs gcnt ? 6.4 7.4 8.4 white-peak blue characteristic bs gmax ? (note t17) 9 10 11 db forced blk input threshold voltage v blkin ? pin 79 5.1 5.6 6.1 v acbr ? ? 1 ? acbg ? ? 2 ? acbb ? ? 3 ? h v acb1r ? 0.15 0.20 0.25 v acb1g ? 0.15 0.20 0.25 v acb1b ? 0.15 0.20 0.25 v acb2r ? 0.27 0.32 0.37 v acb2g ? 0.27 0.32 0.37 v acb2b ? 0.27 0.32 0.37 v acb3r ? 0.52 0.57 0.62 v acb3g ? 0.52 0.57 0.62 acb insertion pulse phase and amplitude v acb3b ? (note t18) 0.52 0.57 0.62 vp-p ik r ? 0.73 0.93 1.13 ik g ? 0.73 0.93 1.13 ik input amplitude ik b ? (note t19) 0.73 0.93 1.13 vp-p
TA1360AFG 2005-08-18 37 characteristics symbol test circuit test condition min typ. max unit dik in + ? 3.00 3.30 3.60 ik input cover range dik in ? ? (note t20) ? 0.50 ? 0.30 ? 0.10 v g txr ? 3.03 3.40 3.83 g txg ? 3.03 3.40 3.83 analog rgb gain g txb ? (note t21) 3.03 3.40 3.83 times g txg/r ? 0.94 1.00 1.06 analog rgb gain 3-axis difference g txb/r ? ? 0.94 1.00 1.06 ? gf txr ? 30 35 ? gf txg ? 30 35 ? analog rgb frequency characteristic gf txb ? at ? 3db 30 35 ? mhz dr 24 ? 0.80 1.20 1.50 dr 25 ? 0.80 1.20 1.50 analog rgb input dynamic range dr 26 ? ? 0.80 1.20 1.50 vp-p txv wpsr ? 2.45 2.70 2.95 txv wpsg ? 2.45 2.70 2.95 analog rgb white peak slice level txv wpsb ? (note t22) 2.45 2.70 2.95 vp-p v bpsr ? 1.15 1.30 1.45 v bpsg ? 1.15 1.30 1.45 analog rgb black peak limit level v bpsb ? (note t23) 1.15 1.30 1.45 v ? v utxr ? 15.5 16.5 18.5 ? v utxg ? 15.5 16.5 18.5 rgb contrast adjustment characteristic ? v utxb ? (note t24) 15.5 16.5 18.5 db v brtxmax ? 3.0 3.2 3.4 v brtxcnt ? 2.6 2.8 3.0 analog rgb bright adjustment characteristic v brtxmin ? (note t25) 2.1 2.3 2.5 v analog rgb mode switching voltage v txon ? pin 2 0.65 0.85 1.05 v rys ? ? 15 50 tp rys ? ? 20 50 ? t rys ? ? 0 10 fys ? ? 10 50 tp rys ? ? 30 50 analog rgb mode switching transfer characteristic ? t rys ? (note t26) ? 0 10 ns txacl 1 ? ? 6.7 ? 4.7 ? 2.7 text acl characteristic txacl 2 ? (note t27) ? 16.5 ? 14.5 ? 12.5 db g osdr ? 2.95 3.30 3.70 g osdg ? 2.95 3.30 3.70 analog osd gain g osdb ? (note t28) 2.95 3.30 3.70 times g osdg/r ? 0.94 1.00 1.06 analog osd gain 3-axis difference g osdb/r ? ? 0.94 1.00 1.06 ? gf osdr ? 35 40 ? gf osdg ? 35 40 ? analog osd frequency characteristic gf osdb ? at ? 3db 35 40 ? mhz
TA1360AFG 2005-08-18 38 characteristics symbol test circuit test condition min typ. max unit dr 18 ? 0.80 1.20 1.50 dr 19 ? 0.80 1.20 1.50 analog osd input dynamic range dr 21 ? ? 0.80 1.20 1.50 vp-p osdv wpsr ? 2.45 2.70 2.95 osdv wpsg ? 2.45 2.70 2.95 analog osd input white peak slice level osdv wpsb ? (note t29) 2.45 2.70 2.95 vp-p osdv bpsr ? 1.30 1.45 1.60 osdv bpsg ? 1.30 1.45 1.60 analog osd black peak limit level osdv bpsb ? (note t30) 1.30 1.45 1.60 v v uosdr11 ? 0.58 0.64 0.71 v uosdg11 ? 0.58 0.64 0.71 v uosdb11 ? 0.58 0.64 0.71 v uosdr10 ? 0.47 0.53 0.59 v uosdg10 ? 0.47 0.53 0.59 v uosdb10 ? 0.47 0.53 0.59 v uosdr01 ? 0.31 0.37 0.45 v uosdg01 ? 0.31 0.37 0.45 v uosdb01 ? 0.31 0.37 0.45 v uosdr00 ? 0.19 0.22 0.24 v uosdg00 ? 0.19 0.22 0.24 osd contrast adjustment characteristic v uosdb00 ? (note t31) 0.19 0.22 0.24 vp-p v brosd0 ? 2.20 2.40 2.60 v brosd1 ? 2.05 2.25 2.45 v brosd2 ? 1.95 2.15 2.35 analog osd bright adjustment characteristic v brosd3 ? (note t32) 1.80 2.00 2.20 v v osdon1 ? pin 80 2.05 2.30 2.55 analog osd mode switching voltage v osdon2 ? pin 1 2.05 2.30 2.55 v rys1 ? ? 15 50 tp rys1 ? ? 20 50 ? tp rys1 ? ? 0 10 fys1 ? ? 10 50 tp rys1 ? ? 30 50 ? tp rys1 ? ? 0 10 rys2 ? ? 15 50 tp rys2 ? ? 20 50 ? tp rys2 ? ? 0 10 fys2 ? ? 10 50 tp rys2 ? ? 30 50 analog osd mode switching transfer characteristic ? tp rys2 ? (note t33) ? 0 10 ns osdacl 1 ? ? 0.00 ? osdacl 2 ? ? 0.00 ? osdacl 3 ? ? 6.7 ? 4.7 ? 2.7 osd acl characteristic osdacl 4 ? (note t34) ? 16.5 ? 14.5 ? 12.5 db
TA1360AFG 2005-08-18 39 characteristics symbol test circuit test condition min typ. max unit 41tv 1 ? ? 7 ? 6 ? 5 42tv 1 ? ? 7 ? 6 ? 5 43tv 1 ? ? 7 ? 6 ? 5 41tv 2 ? ? 4 ? 3 ? 2 42tv 2 ? ? 4 ? 3 ? 2 43tv 2 ? ? 4 ? 3 ? 2 41tv 3 ? ? ? 55 ? 50 42tv 3 ? ? ? 55 ? 50 43tv 3 ? ? ? 55 ? 50 41osd 1 ? ? 6.5 ? 5.5 ? 4.5 42osd 1 ? ? 6.5 ? 5.5 ? 4.5 43osd 1 ? ? 6.5 ? 5.5 ? 4.5 41osd 2 ? ? 12.0 ? 10.5 ? 9.0 42osd 2 ? ? 12.0 ? 10.5 ? 9.0 43osd 2 ? ? 12.0 ? 10.5 ? 9.0 41osd 3 ? ? ? 40 ? 30 42osd 3 ? ? ? 40 ? 30 osd blending characteristic 43osd 3 ? (note t35) ? ? 40 ? 30 db y rgb input v v a ? ? ? 50 ? 45 y osd input v v o ? ? ? 55 ? 45 rgb input y v a v ? ? ? 50 ? 45 rgb input osd input v a o ? ? ? 50 ? 45 osd input y v o v ? ? ? 45 ? 40 osd input rgb input v o a ? input: signal 1 (f o = 4 mhz, amplitude 0.7 vp-p) ? ? 50 ? 45 rgb input in three axes ? ? ? ? 50 ? 40 input crosstalk osd input in three axes ? ? input: signal 1 (f o = 1 mhz, amplitude 0.7 vp-p) ? ? 50 ? 40 db blp min ? 23 28 33 blp max ? 55 60 65 ire blg min ? 2.4 2.9 3.4 blue stretch point/gain blg max ? (note t36) 5.4 6.4 7.4 db bl 1 ? 84 89 94 bl 2 ? 89 94 99 bl 3 ? 93 98 103 blue stretch correction bl 4 ? (note t37) 98 103 108 ire wpl1 ? 16 21 25 wpl2 ? 51 56 61 white letters improvement wpl3 ? (note t38) 97 102 107 vp-p
TA1360AFG 2005-08-18 40 sync block characteristics symbol test circuit test condition min typ. max unit sync input horizontal sync phase s ph ? (note ha01) 0.55 0.65 0.75 s hd input horizontal sync phase hd ph ? (note ha02) 0.58 0.68 0.78 s hd duty1 ? ? 0.5 2.0 hd duty2 ? 62 67 72 hd duty3 ? ? 99.5 98 polarity detecting rage hd duty4 ? (note ha03) 47.5 52.5 57.5 % v ths00 ? 10 16 22 v ths01 ? 18 24 30 v ths10 ? 26 32 38 sync input threshold amplitude v ths11 ? (note ha04) 34 40 46 % hd input threshold voltage v thhd ? (note ha05) 0.65 0.75 0.85 vp-p ? h sft ? ? 11 12.5 14 horizontal picture position (phase) adjustment variable range ? h sft + ? (note ha06) 11 12.5 14 % horizontal picture position (phase) shift switching amount h sft ? ? 5.2 6.7 9.2 % curve correction variable amount ? h #40 ? (note ha07) 2.9 3.4 3.9 % cp s0 ? 3.1 3.8 4.5 cp w0 ? 2.0 2.5 3.0 % cp v0 ? 4.7 5.0 5.3 v cp s1 ? 0 0.7 1.5 cp w1 ? 1.9 2.4 2.9 % cp v1 ? 4.7 5.0 5.3 v cp s2 ? 3.2 4.2 5.2 cp w2 ? 2.2 2.7 3.2 % clamp pulse phase/width/level cp v2 ? (note ha08) 4.7 5.0 5.3 v hbp s00a ? 1.1 3.0 8.1 hbp s00b ? 1.2 3.0 5.9 hbp s01a ? 6.0 8.0 13.0 hbp s01b ? 6.0 8.0 11.0 hbp s10a ? 10.0 13.0 17.0 hbp s10b ? 10.0 13.0 15.0 hbp s11a ? 15.5 18.0 22.5 black peak detection pulse phase hbp s11b ? (note ha09) 16.0 18.0 21.0 % fbp threshold v thfbp ? (note ha10) 4.8 5.3 5.8 v hvco oscillation start voltage v vco ? pin 42: monitor, v cc voltage 3.0 4.0 5.0 v h-out start voltage v hon ? pin 37: monitor, v cc voltage 5.0 6.0 7.0 v h-out stop voltage v hoff ? pin 37: monitor, v cc voltage 4.3 5.3 6.3 v th a ? 38 41 43 h-out pulse duty th b ? (note hb01) 44 47 49 %
TA1360AFG 2005-08-18 41 characteristics symbol test circuit test condition min typ. max unit f15k ? 15.59 15.75 15.91 f28k ? 27.90 28.125 28.35 f31k ? 31.19 31.5 31.82 f33k ? 33.41 33.75 34.09 f37k ? 37.60 37.9 38.40 horizontal free-run frequency f45k ? (note hb02) 44.52 45.0 45.48 khz f15k min ? 14.58 14.88 15.18 f15k max ? 16.52 16.85 17.18 f28k min ? 25.91 26.44 26.97 f28k max ? 29.37 29.96 30.55 f31k min ? 29.12 29.72 30.32 f31k max ? 33.03 33.70 34.37 f33k min ? 31.09 31.73 32.37 f33k max ? 35.24 35.95 36.66 f37k min ? 35.82 36.54 37.26 f37k max ? 40.59 41.39 42.19 f45k min ? 42.34 43.20 44.06 horizontal oscillation frequency variable range f45k max ? (note hb03) 47.99 48.93 49.87 khz bh15k ? 176 220 264 bh28k ? 320 400 480 bh31k ? 352 440 528 bh33k ? 376 470 564 bh37k ? 390 480 570 horizontal oscillation control sensitivity bh45k ? hz/0.1 v (note hb04) 520 650 780 ? v hoh ? 4.8 5.1 5.2 h-out output voltage v hol ? (note hb05) ? 0.1 0.3 v pin 55 v fhsw1 ? 1.7 2.0 2.3 v fhsw2l ? 1.3 1.5 1.7 v fhsw2m ? 4.3 4.5 4.7 horizontal oscillation frequency control voltage threshold pin 41 v fhsw2h ? ? 7.3 7.5 7.7 v vdac 1h ? test = (00), dac1 = (0) 8.5 9.0 ? dac1 vdac 1l ? test = (00), dac1 = (1) ? 0.3 0.7 vdac 2h ? test = (00), dac2 = (1) 8.5 9.0 ? dac switch voltage dac2 vdac 2l ? test = (00), dac2 = (0) ? 0.3 0.7 v vp output pulse width vp w ? (note v01) 4 4.5 5 h 000 vpt0 ? 1278 1281 1284 001 vpt1 ? 846 849 852 010 vpt2 ? 722 725 728 011 vpt3 ? 657 660 663 100 vpt4 ? 610 613 616 101 vpt5 ? 360 363 366 vertical free-run (maximum pull-in range) 110 vpt6 ? ? 304 307 310 h vertical minimum pull-in range t vpull ? (note v02) 47 48 49 h
TA1360AFG 2005-08-18 42 characteristics symbol test circuit test condition min typ. max unit vbpp 0e ? 51 52 53 000 vbpp 0s ? 1099.5 1100.5 1101.5 vbpp 1e ? 51 52 53 001 vbpp 1s ? 729.5 730.5 731.5 vbpp 2e ? 49.5 50.5 51.5 010 vbpp 2s ? 599.5 600.5 601.5 vbpp 3e ? 49.5 50.5 51.5 011 vbpp 3s ? 544.5 545.5 546.5 vbpp 4e ? 51 52 53 100 vbpp 4s ? 499.5 500.5 501.5 vbpp 5e ? 51 52 53 101 vbpp 5s ? 289.5 290.5 291.5 vbpp 6e ? (note v03) 51 52 53 h vertical black peak detection pulse 110 vbpp 6s ? 239.5 240.5 241.5 v blkmin ? 15 16 17 vertical blanking end phase v blkmax ? (note v04) 45 46 47 h high v vph ? 4.6 5.0 5.4 vp output voltage low v vpl ? pin 35 voltage ? 0.1 0.5 v 15.75 khz ? 10.0 11.6 13.4 28.125 khz ? 5.4 6.4 8.8 31.5 khz ? 4.8 5.8 7.6 33.75 khz ? 4.4 5.4 7.2 37.9 khz ? 3.9 4.8 6.6 sync input to vp output delay time 45 khz ? ? 3.1 4.1 5.9 s cblk1 000min ? 1087 1088 1089 000 cblk1 000max ? 1117 1118 1119 cblk1 001min ? 719 720 721 001 cblk1 001max ? 749 750 751 cblk1 010min ? 591 592 593 010 cblk1 010max ? 621 622 623 cblk1 011min ? 527 528 529 011 cblk1 011max ? 557 558 559 cblk1 100min ? 487 488 489 100 cblk1 100max ? 517 518 519 cblk1 101min ? 279 280 281 101 cblk1 101max ? 309 310 311 cblk1 110min ? 223 224 225 compression blk 1 (start phase) 110 cblk1 110max ? ? 253 254 255 h
TA1360AFG 2005-08-18 43 characteristics symbol test circuit test condition min typ. max unit cblk2 000min ? 49 50 51 000 cblk2 000max ? 77 78 79 cblk2 001min ? 49 50 51 001 cblk2 001max ? 77 78 79 cblk2 010min ? 49 50 51 010 cblk2 010max ? 77 78 79 cblk2 011min ? 49 50 51 011 cblk2 011max ? 77 78 79 cblk2 100min ? 49 50 51 100 cblk2 100max ? 77 78 79 cblk2 101min ? 49 50 51 101 cblk2 101max ? 77 78 79 cblk2 110min ? 49 50 51 compression blk 2 (end phase) 110 cblk2 110max ? ? 77 78 79 h external v-blk input current i extblk ? pin 35 input current 520 625 780 a
TA1360AFG 2005-08-18 44 test condition for picture quality (sharpness) block common test condition for picture quality (sharpness) block 1. sw67 = sw66 = b, sw63 = b, sw60 to sw61 = b, sw44 = on, sw40 = b, sw18 to sw26 = a, sw77 = open 2. send bus control data as preset values, turn acb operation switching to acb off (00), select sync input (1), turn p-mode to normal 1(000), wpl-level to max (111), and change subaddress (1c) to (03). 3. input sync signal, which is in sync with input signal for testing except ?sweep?, to #53 (sync input). ?h-freq.? should be t he same frequency as the one of #53. 4. set y/color difference input mode to (0), sync separator level to 20 % (01), and vertical free-running frequency to 307h (11 0). test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p01 black detection level shift b c c b open 1. connect external power supply ps to #68, and monitor #70 and #74. 2. set black stretch point 1 to off (000), and black detection level to 0 ire (1). 3. increase ps voltage from 4.95 v in steps of 1 mv. at the moment when #70 picture period (high) drops to low level, monitor dc difference on #74 v b . 4. set black detection level to 3 ire (0). 5. repeat the step 3 above and monitor dc difference, v b3 on #74. p02 black stretch amp maximum gain b a a b open 1. set sw70 to a (maximum gain), and input 500-khz sine wave to tpa. 2. adjust signal amplitude to 0.1 vp-p on #68. 3. set black stretch point 1 to off (000), and measure #74 amplitude v a . 4. set black stretch point 1 to 001 (black stretch on), and measure #74 amplitude v b . 5. calculate gbs using a following equation. gbs = 20 og l (v b v a ) [db] v b , v b3 #74 waveform #70 waveform
TA1360AFG 2005-08-18 45 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p03 black stretch start point 1 a a c b open 1. set sw70 to a (maximum gain), and black stretch point 1 to off (000). apply 0 v to #71. 2. connect external power supply ps to #68, increase voltage from v 3 , and plot #74 voltage change s1. the #74 voltage is set as v 0 when v 3 is applied, and as v 100 when v 3 + 0.7 v is applied. 3. set black stretch point 1 to minimum (001), increase ps voltage from v 3 , and then plot #74 voltage change s2. 4. set black stretch point to maximum (111), repeat 3 above, then plot #74 voltage change s3. 5. determine intersection points of s1, s2 (v bst1 ), and s3 (v bst2 ) as shown in the figure below. also calculate p bst1 and p bst2 using following equations. v z [v] = v 100 [v] ? v 0 [v] p bst1 [(ire)] = [(v bst1 [v] ? v 74 [v]) v z ] 100 (ire) p bst2 [(ire)] = [(v bst2 [v] ? v 74 [v]) v z ] 100 (ire) #74 #68 v 74 v bst1 v bst2 s3 s2 s1
TA1360AFG 2005-08-18 46 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p04 black stretch start point 2 a a a b on 1. set black stretch point 1 to off (000), apply 0 v to #71, input tg7 linearity to tpa, adjust amplitude on #68 as shown in the figure below, set unicolor to center (1000000), and measure amplitude of #12 (r out), v p12 . 2. set black stretch point 1 to 001 (black stretch on), connect external power supply ps to #74, and monitor #12 (r out). 3. set black stretch start point 2 data to minimum (00). when ps is v 74 (apl 0%), and v 74 + 1.0 v (apl 100%), determine black stretch start point difference ? v 00 as shown in the figure below. (monitor input waveform and output waveform with an oscilloscope, adjust the both waveforms to have the same amplitude (gradient), and compare them to determine the bend point of the output.) 4. set black stretchstart point 2 data to maximum (11), determine black stretch start point difference ? v1 1 . 5. calculate following equations. p bs1 = ( ? v 00 /v p12 ) 100 p bs2 = ( ? v 11 /v p12 ) 100 a pl 0% #68 waveform (linearity) 0.7 v p-p 0.3 v p-p ? v *** #12 (r out) a pl 100% linearity
TA1360AFG 2005-08-18 47 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p05 black stretch characteristic switch a a c b open 1. set sw70 to a (maximum gain), black stretch point 1 (18) to maximum (e0), subaddress (1c) data to (00) and (1e) data to (08). 2. apply 0 v to #71 and connect external power supply ps to #68. set ps to v 68 + 0.7 v, and adjust unicolor so that dc level of #12 is + 1.0 v. plot voltage change s4 of #12 (voltage in picture period). 3. determine intersection points (v bsc1 and v bsc2 ) of s2 and s4 obtained from the plot in black stretch start point 1. then calculate p bsc1 and p bsc2 using following equation. 4. set black stretch characteristic switch subaddress data (1c)/(1e) to (20)/(00) and (20)/(08) respectively. as described in steps 2 and 3, determine intersection points (v bsc3 , v bsc4 , v bsc5 and v bsc6 ) and calculate p bsc3 , p bsc4 , p bsc5 and p bsc6. p bsc * = (v bsc * [v] ? v 12 [v]) 1.0 100 [(ire)] v 12 v68 s4 black stretch characteristic switch on v bsc2 v bsc1 #12 s2 v 68 + 0.7 v #68
TA1360AFG 2005-08-18 48 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p06 black stretch area reinforcement current b ? c b on 1. connect external power supply ps1 to #68. 2. leave sw70 open, put an ammeter between sw70a and #70, connect external power supply ps2 to sw70a, set ps1 to 5.7 v, and set ps2 to 5 v. 3. measure current value ibsa0 and ibsa1 when bus data of black stretch area reinforcement [18] is set to on [80] and off [81]. calculate ibsa using the following equation. ibsa = ibsa0 ibsa1 p07 d.abl detection voltage b a c b open 1. set d.abl sensitivity to maximum (11), and black stretch point 1 to off (000). 2. connect external power supply ps to #78 and decrease voltage from 6.5 v. 3. repeat 2 when d.abl detection voltage is changed to 00, 01, 10, and 11. at the moment when #74 picture period changes to low, measure respective ps voltages v 00 , v 01 , v 10 , and v 11 . 4. calculate voltage differences between v 00 and v 01 (dv 01 ), between v 00 and v 10 (dv 10 ), and between v 00 and v 11 (dv 11 ) dv *** = v 00 ? v 01 (v 10 , v 11 ) #70 waveform #74 detected #74 undetected mmeter sw70 ps2 5 v a
TA1360AFG 2005-08-18 49 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p08 d.abl sensitivity b a c b on 1. set black stretch point 1 to off (000), and connect external power supply to #78. 2. set d.abl detection voltage to minimum (00). interrelation between #78 voltage and #74 voltage when d.abl sensitivity is set to minimum (00) and maximum (11) can be plotted as figure shown below. 3. measure gradients sdamin and sdamax using the figure below. s damin = ? y/ ? x s damax = ? y/ ? x ? y #78 ? x 100% 10% 10% #74
TA1360AFG 2005-08-18 50 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p09 black level correction b a a b open 1. set black stretch point 1[18] to off (00). 2. input signal of 0.7-v picture period amplitude to #68, and measure #12 picture period amplitude vb [v]. 3. set black level correction [18] to on [04], determine dc change vblc [v], and calculate blc [v] using the following equation blc = (vblc/vb)] 100 [(ire)] vb #12 vblc black level correction on black level correction off
TA1360AFG 2005-08-18 51 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p10 dynamic y correction point a b c b open 1. connect external power supply ps1 to #68, ps2 to tp1, and set ps2 to 0 v. 2. set dark area dynamic y gain vs dark area to min (00), static y gain1 to off (000). 3. increase ps1 from v 68 [v] to v 68 [v] + 0.7 v and plot voltage change of #12 picture period. take 0 for v 68 [v] when the change is plotted. (v 68 is pin voltage of pin 68) 4. set dark area dynamic y gain vs dark area max (11), static y gain1 to max (111) and ps2 to 1.2 v. 5. increase ps1 from v 68 [v] to v 68 [v] + 0.7 v and plot voltage change of #12 picture period. 6. measure vdgp by the following figure, and p dgp using the following equation. dgp = (vdgp [v] ? v 68 [v])/0.7 [v] 100 off on #12 voltage [v] #68 voltage [v] vdgp v 68 + 0.7v (100 ire) v 68
TA1360AFG 2005-08-18 52 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p11 dark area dynamic y gain a b c b open 1. connect external power supply ps1 to #68, external power supply ps2 to tp1, and set ps2 to 0 v. 2. set dark area dynamic y gain [1c] to min [03], and dark area static y gain [1c] to 0db [17]. 3. set ps1 to v 68 [v], and measure #12 picture period voltage vddgv 68 [v]. set ps1 vdgp [v], and measure #12 picture period voltage vddgmin [v]. 4. set dark area dynamic y gain [1c] to max [d7], ps2 to 1.2 v, measure voltage vddgmax [v] of #12 picture period when ps1 is vdgp [v], and calculate the following equations. vddgmax ? vddgmin = a vddgmin ? vddgv 68 = b gddgmax = 20 og l [b/(b-a)] [db] off on #12 voltage [v] #68 voltage [v] vdgp vddgv 68 vddgmin vddgmax vddgmin ? vddgv 68 = b vddgmax ? vddgmin = a v 68 v 68 +
TA1360AFG 2005-08-18 53 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p12 dark area static y gain a b c b open 1. connect external power supply ps1 to #68, external power supply ps2 to tp1, and set ps2 to 0 v. 2. set dark area dynamic y gain [1c] to min [03], and dark area static y gain [1c] to off [03]. 3. set ps1 to v 68 [v], and measure #12 picture period voltage vsgoff1 [v]. 4. set ps1 to vdgp [v], and measure #12 picture period voltage vsgoff2 [v]. 5. set dark area static y gain [1c] to max [1f], ps1 to vdgp [v], measure #12 picture period voltage vsgmax, and calculate gdsgmax using the following equations. vsgmax ? vsgoff2 = a vsgoff2 ? vsgoff1 = b gdsgmax = 20 og l [b/(b - a)] [db] 6. set dark area static y gain [1c] to min [07], ps1 to vdgp [v], measure #12 picture period voltage vsgmin, and calculate gdsgmin using the following equation. gdsgmin = 20 og l [(vsgmin ? vsgoff1)/(vsgoff2 ? vsgoff1)] [db] off on #12 voltage [v] #68 voltage [v] vdgp vsgoff1 vsgoff2 vsgmax vsgmax ? vsoff2 = a v 68 v 68 + ? vsgoff1 vsgmin ? vsgoff1 off on #12 voltage [v] #68 voltage [v] vdgp vsgoff1 vsgoff2 vsgmin v 68 v 68 +
TA1360AFG 2005-08-18 54 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p13 light area y correction point a b c a open 1. connect external power supply ps1 to #68, external power supply ps2 to tp1, and set ps2 to 0 v . 2. set dark area static y gain [1c] to 0db [17], and bright area static y gain [1c] to 0db [17]. 3. increase ps1 from v 68 [v] to v 68 [v] + 0.7 [v], and plot the voltage change of #12 picture period. take 0 for v 68 [v] when the change is plotted. (v 68 is pin voltage of pin 68) 4. set light area static y gain [1c] to max [04]. 5. increase ps1 from v 68 [v] to v 68 [v] + 0.7 [v], and plot the voltage change of #12 picture period. 6. measure vlgp using the following figure, and plgp using the following equation. lgp = (vlgp [v] ? v 68 [v])/0.7 [v] 100 (ire) #12 voltage [v] off on #68 voltage vlgp v 68 v 68 +
TA1360AFG 2005-08-18 55 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p14 light area dynamic y gain a b c a open 1. connect external power supply ps1 to #68, external power supply ps2 to tp7, and set ps2 to 1.2 v. 2. set dark area static y gain [1c] to 0db [17], and light area static y gain [1c] to 0db [17]. 3. set ps1 to v 68 [v], and measure #12 picture period voltage vldgoff1. 4. set ps1 to vlgp [v], and measure #12 picture period voltage vldgoff2. 5. set light area static y gain [1c] to max [14], ps2 to 0 v, ps1 to vlgp [v], determine #12 picture period voltage vldgmax [v] using the following equations. vldgmax ? vldgoff2 = a vldgoff2 ? vldgoff1 = b gldg = 20 og l [b/(b ? a)] vldgmax ? vldgoff2 = a vldgoff2 ? = +
TA1360AFG 2005-08-18 56 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p15 light area static y gain b b c a open 1. connect external power supply ps1 to #68, external power supply ps2 to tp7, and set ps2 to 0 v. 2. set dark area static y gain [1c] to 0db [17], and light area static y gain [1c] to 0db [17]. 3. set ps1 to v 68 [v], and measure #12 picture period voltage vlsgoff1 [v]. 4. set ps1 to vlgp [v], and measure #12 picture period voltage vldgoff2 [v]. 5. set light area static y gain [1c] to max [14], ps1 to vlgp [v], measure #12 picture period voltage vlsgmax, and calculate glasgmax [db] using the following equations. vlsgmax ? vlsgoff2 = a vlsgoff2 ? vlsgoff1 = b glsgmax = 20 og l [b/(b ? a)] [db] 6. set light area static y gain [1c] to min [16], ps1 to vlgp [v], measure #12 picture period voltage vlsgmin, and calculate glasgmin [db] using the following equations. vlsgmin ? vlsgoff2 = c vlsgoff2 ? vlsgoff1 = b glsgmin = 20 og l [b/(b ? c)] [db] vlsgmin ? vldgoff2 = c vlsgoff2 ? = + ? vldgoff2 = a vlsgoff2 ? = +
TA1360AFG 2005-08-18 57 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p16 dark area detection sensitivity a b a a open 1. input the signal whose picture period amplitude is 0.18 v to #68 as shown in the figure below. 2. measure #71 pin voltage damin, dacen, and damax [v] when dark area detection sensitivity [1d] is set to min [00], cen [04] and max [07]. #68 0.18 v #71 damin ? cen ? max [v]
TA1360AFG 2005-08-18 58 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p17 dc restoration rate correction gain b b c b on 1. set dc restoration rate correction point to minimum (000), dc restoration rate correction limit point to 80% (11), and connect external power supply ps1 to #68. 2. monitor dc level of #12 picture period. set ps1 to v 68 + 0.7 v, and adjust uncolor so that dc level is + 0.7. 3. set dc restoration correction rate to minimum (000), and measure v dt1 and v dt2 of v 68 [v] and v 68 + 0.1 v as shown in the figure below. 4. set #68 to v 68 + 0.1 v, dc restoration correction rate to maximum (111), and measure v dt3 . 5. set dc restoration correction rate sw to less than 100 % (1), #68 to v 68 + 0.1 v, dc restoration correction rate to maximum (111), and measure v dt4 . 6. calculate adt 100 , adt 135 , and adt 65 using following equations. adt 100 = (v dt2 [v] ? v dt1 [v]) 0.1 [v] adt 135 = (v dt3 [v] ? v dt1 [v]) 0.1 [v] adt 65 = 1 ? ( (v dt2 [v] ? v dt4 [v]) 0.1 [v]) picture period v dt1 v 68 [v] v dt2 v dt3 v dt4 v 68 + 0.1 v #12 waveform
TA1360AFG 2005-08-18 59 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p18 dc restoration rate correction point b b c b on 1. set dc restoration rate correction point to minimum (000), dc restoration rate correction limit point to 80% (11), and connect external power supply ps1 to #68. 2. monitor dc level of #12 picture period. set ps1 to v 68 + 0.7 v, and adjust unicolor so that dc level is + 1.0. 3. set dc restoration correction rate to minimum (000), and increase ps1 from v 68 . plot relation between #74 (dc voltage) and #12 (voltage in picture period). 4. set dc restoration correction rate to maximum (111), and increase ps1 from v 68 . plot relation between #74 and #12. 5. set dc restoration correction rate to maximum (111), dc restoration rate correction point (111), and increase ps1 from v 68 . plot relation between #74 and #12. 6. determine v dt0 , and v dt1 using the following equations. v dt0 = [(v sp0 ? v 74 )/1 v] 100% v dt1 = [(v sp1 ? v 74 )/1 v] 100% dc restoration correction rate 000 dc restoration rate correction point 111 dc restoration rate correction point 000 #74 v sp1 v sp0 v pc #12
TA1360AFG 2005-08-18 60 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p19 dc restoration rate correction limit point b b b c on 1. set unicolor to maximum (1111111), dc restoration rate correction point to minimum (000), and connect external power supply ps1 to #74. 2. set dc restoration correction rate to maximum (111). 3. increase ps from 5 v. monitor #12, and plot dc restoration correction amount. 4. repeat the step 3 above by changing data at dc restoration rate correction limit point. measure the value using the figure below. calculate p dtl60 , p dtl75 , p dtl87 , and p dtl100 using following equations. p dtl60 = [(v l60 ? v 74 )/1.0] 100% p dtl75 = [(v l75 ? v 74 )/1.0] 100% p dtl87 = [(v l87 ? v 74 )/1.0] 100% p dtl100 = [(v l100 ? v 74 )/1.0] 100% 100% (00) 87% (01) 73% (10) 60% (11) v l87 v l100 v l75 v l60 #74 #12
TA1360AFG 2005-08-18 61 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p20 dc fluctuation at switching sharpness control peak frequency b b a b on 1. set unicolor [05] to max [7f], srt gain [19] to min [00], and cde [15] to cen [80]. input setup signal (0.2 vp-p) to tpa as shown in the figure below. 2. set sharpness [09] to min [00] and max [80]. monitor #43, measure dc level vrdcmin and vrdcmax [v]. calculate vrdc [v] using the following equation. vrdc = vrdcmin ? vrdcmax [v] #68 0.2 v #12 vrdc *
TA1360AFG 2005-08-18 62 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p21 sharpness control range b b a b on 1. input sine wave to tpa. (the frequency is variable.) 2. set #68 amplitude to 20 mvp-p. 3. set unicolor to maximum (1111111), srt-gain to minimum (00000), apacon peak frequency to 13.5 m (00), and color detail enhancer (cde) to center (10). 4. set picture mute to off (p-mode: normal 1, 000), and monitor #12. 5. set picture sharpness to center (1000000). set input frequency to 100 khz, and measure the amplitude v 100 . 6. set picture sharpness to maximum (1111111). set input frequency to f ap00 , measure the amplitude v max00 , and calculate g max00 using the following equations. 7. set picture sharpness to minimum (0000000). set input frequency to f ap00 , measure the amplitude v min00 , and calculate g min00 using the following equations. 8. set apacon peak frequency to 9.5 m (01). set input frequency to f ap01 , measure v max01 /v min01 and calculate g max01 /g min01 . 9. set apacon peak frequency to 6.4 m (10). set input frequency to f ap10 , measure v max10 /v min10 and calculate g max10 /g min10 . 10. set apacon peak frequency to 4.5 m (11). set input frequency to f ap11 , measure v max11 /v min11 and calculate g max11 /g min11 . g max *** = 20 og l (v max *** v 100 ) [db] g min *** = 20 og l (v min *** v 100 ) [db] note: when a spectrum analyzer is used, measure gain for low frequency.
TA1360AFG 2005-08-18 63 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p22 sharpness control center characteristic b b a b on 1. input sine wave to tpa. (the frequency is variable.) 2. set the amplitude of #68 to 20 mvp-p. 3. set unicolor to maximum (1111111), srt-gain to minimum (00000), apacon peak frequency to 13.5 m (00), and color detail enhancer (cde) to center (10). 4. set picture mute to off (p-mode: normal 1, 000), and monitor #12. 5. set picture sharpness to center (1000000). set input frequency to 100 khz, and measure the amplitude v 100 . 6. set picture sharpness to center (1000000). set input frequency to f ap00 , measure #12 amplitude v cen00 , and calculate g cen00 using the following equations. 7. set apacon peak frequency to 9.5 m (01). set input frequency to f ap01 , measure v cen01 and calculate g cen01 . 8. set apacon peak frequency to 6.4 m (10). set input frequency to f ap10 , measure v cen10 and calculate g cen10 . 9. set apacon peak frequency to 4.5 m (11). set input frequency to f ap11 , measure v cen11 and calculate g cen11 . g cen *** = 20 og l (v cen *** v 100 ) [db] note: when a spectrum analyzer is used, measure gain for low frequency.
TA1360AFG 2005-08-18 64 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p23 2t pulse response srt control b b a b on 1. input 2t pulse (0.7 vp-p) signal to tpa. set unicolor to maximum (1111111), srt-gain to minimum (00000), cde to center (10) picture sharpness control to center (1000000). 2. set apacon peak frequency to13.5 m (00), and monitor #12. 3. measure t srtmin00 and v srtmin00 as shown in the figure below. 4. set srt-gain to maximum (11111), and measure t srtmax00 and v srtmax00 . 5. set apacon peak frequency to 9.5 m (01). set srt-gain to minimum (00000) and maximum (11111). measure t srtmin01 /v srtmin01 and t srtmax01 / v srtmax01 . 6. set apacon peak frequency to 6.4 m (10). set srt-gain to minimum (00000) and maximum (11111). measure t srtmin10 /v srtmin10 and t srtmax10 / v srtmax10 . 7. set apacon peak frequency to 4.5 m (11). set srt-gain to minimum (00000) and maximum (11111). measure t srtmin11 /v srtmin11 and t srtmax11 /v srtmax11 . 8. calculate the following equations. t srt00 = 20 og l [ ((v srtmax00 /t srtmax00 )/(v srtmin00 /t srtmin00 )) t srt01 = 20 og l [(v srtmax01 /t srtmax01 )/(v srtmin01 /t srtmin01 )] t srt10 = 20 og l [(v srtmax10 /t srtmax10 )/(v srtmin10 /t srtmin10 )] t srt11 = 20 og l [(v srtmax11 /t srtmax11 )/(v srtmin11 /t srtmin11 )] 20% 100% t *** 20% v ***
TA1360AFG 2005-08-18 65 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p24 vsm gain b b a b on 1. input sine wave of f vsm frequency to tpa. set #68 amplitude to 0.02 vp-p. 2. turn on sw77 and change vsm gain from minimum (001) to maximum (111). measure #77 amplitude, v 001 , v 011 , v 100 , v 101 , v 110 , and v 111 . set input amplitude to 0.7 vp-p, and vsm gain to off (000). measure tp77 amplitude v 000 . 3. calculate the following equations. g v000 = 20 og l (v 000 /0.7) [db] g v001 = 20 og l (v 001 /0.02) [db] g v010 = 20 og l (v 010 /0.02) [db] g v011 = 20 og l (v 011 /0.02) [db] g v100 = 20 og l (v 100 /0.02) [db] g v101 = 20 og l (v 101 /0.02) [db] g v110 = 20 og l (v 110 /0.02) [db] g v111 = 20 og l (v 111 /0.02) [db] p25 vsm limit b b b a on 1. input sine wave of frequency f vsm to tpa. 2. set vsm gain to 111, and #68 amplitude to 0.7 vp-p. 3. turn on sw77 and measure tp77 amplitude v lu and v ld [vp-p] as shown in the figure below. v lu v ld
TA1360AFG 2005-08-18 66 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p26 y delay time switching b b a b on 1. set unicolor to maximum (1111111), srt-gain to minimum (00000), and input 2t pulse sig nal (approximately 0.7 v (p-p)) to tpa. 2. set picture sharpness to center (1000000). 3. monitor #68 and #12 as shown in the figure below. measure ydl00 that is the time difference between signals #68 and #12. 4. set y/c-dl1 to + 5 ns (1), and measure ydl01 as shown in the figure below. 5. set y/c-dl1 to 0 ns (0), y/c-dl2 to + 10 ns (1) and measure ydl10 as shown in the figure below. 6. set y/c-dl1 to + 5 ns (1), y/c-dl2 to + 10 ns (1) and measure ydl11 as shown in the figure below. 7. determine ydla, ydlb, and ydlc using the following equations. ydla = ydl01 ? ydl00 ydlb = ydl10 ? ydl00 ydlc = ydl11 ? ydl00 2t pulse a pproximately 0.7 v p - p 50% 50% ydl00 #68 #12 ydl01 ydl10 ydl11
TA1360AFG 2005-08-18 67 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p27 y group delay correction b b a b on 1. input multi burst signal (4.2-mhz frequency, 0.1 vp-p at #68) of a signal in tpa. se t unicolor to maximum (1111111), srt-gain to minimum (00000), and color detail enhancer (cde) to minimum (00000). 2. set sharpness to flat (dec [30]), apacon peak frequency to 4.5 m (11), and monitor #12. 3. sine wave signal a input becomes like signal b on #12 as shown in the figure on the right. measure s a and s b . 4. when group delay correction is set to minimum (0000), signal a becomes like signal c on #12. measure s amin and s bmin . 5. when group delay correction is set to maximum (1111), signal a becomes like signal d on #12. measure s amax and s bmax . 6. calculate the following equations. g amin = 20 og l (s amin /s a ) [db] g bmin = 20 og l (s bmin /s b ) [db] g amax = 20 og l (s amax /s a ) [db] g bmax = 20 og l (s bmax /s b ) [db] note: sine wave input starts and ends within the picture period such as a burst signal. the wave is not continuous. signal a signal b signal c signal d s a s b s a min s bmin s bmax s amax
TA1360AFG 2005-08-18 68 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p28 color detail enhancer (cde) b b a b on 1. set unicolor to maximum (1111111), srt-gain to minimum (00000), color to center (1000000), and color limiter level to 2 vp (1). input sweep signal to tpa so that #68 amplitude is 20 mvp-p. set sw67 to a, and input signal as shown in the figure below (#67 amplitude is 0.2 vp-p) to tp67. 2. set picture sharpness to center (1000000), y detail control to center (1000), and monitor #14 with a spectrum analyzer. 3. when cde is at minimum (00), set low frequency area to 0db, and determine peak level g cdemin . 4. when cde is at maximum (11), set low frequency area to 0db, and determine peak level g cdemax . 5. calculate the following equation. g cde00 = g cdemax00 ? g cdemin00 6. when apacon peak frequency is 13.5 m (00), 9.5 m (01), 6.4 m (10), and 4.5 m (11), calculate g cde00 , g cde01 , g cde10 , and g cde11 respectively using above equation. max output gain [db] input frequency [mhz] 0db picture period blk period 0.2 vp-p min
TA1360AFG 2005-08-18 69 test conditions sw mode note no. characteristics sw71 sw70 sw68 sw64 sw74 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) p29 y detail control range b b a b on 1. set unicolor to maximum (1111111), srt-gain to minimum (00000), cde to center (10), an d apacon peak frequency to 4.5 m (11). input sweep signal to tpa. 2. set #68 amplitude to 20mvp-p. 3. set picture sharpness to center (1000000), y detail control to maximum (1111), and monitor #12 with a spectrum analyzer. 4. set low frequency area to 0db, and measure each peak level g ydmax . 5. set y detail control to center (1000), and measure peak level g ydcen . 6. set y detail control to minimum (0000), and measure peak level g ydmin .
TA1360AFG 2005-08-18 70 test conditions for color difference block 1: yuv input and matrix common test condition for color difference block 1: yuv input and matrix 1. sw71 = b, sw70 = b, sw44 = on, sw18 to sw26 = a, sw77 = open, sw74 = open 2. transfer bus control data with preset values. 3. turn acb operation switching to acb off (0), and turn high blight color off (0). 4. input sync signal [must be sync with input signal for testing except sweep.] to #53 (sync input), and set sync-in-sw to 1. test conditions sw mode note no. characteristics sw68 sw67 sw66 sw64 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) c a a b sw63 sw61 sw60 D s01 color srt gain b b b D 1. set y mute on (p-mode: y-mute, 001), brightness to center (10000000), color to center (1000000), unicolor to maximum (1111111). 2. input 2t pulse signal to tp67 so that #67 amplitude is 423 mvp-p. 3. monitor #14 output waveform. when color srt peak frequency is 4.5 mhz (0), measure gradients of color srt gain for minimum (00), center (10), and maximum (11) that are sb00min, sb00cen, and sb00max as shown in the figure below. set sb00min to 0db, calculate gs b00cen = 20 og l (sb00cen/sb00min) and gs b00max = 20 og l (sb00max/ssb00min). 4. when color srt peak is 5.8 mhz (1), measure gradients of color srt gain for minimum (00), center (10), and maximum (11). calculate g sb01cen and g sb01max . 5. input 2t pulse signal to tp66 so that #66 amplitude is 300 mvp-p. 6. monitor #12 output waveform. when color srt peak frequency is 4.5 mhz (0), measure gradients of color srt gain for minimum (00), center (10), and maximum (11) that are sr00min, s r00cen , and s r00max as shown in the figure below. set sr00min to 0db, calculate gsb00cen = 20 og l (sb00cen/sb00min) and gsb00max = 20 og l (sb00max/ssb00min). 7. when color srt peak is 5.8 mhz (1), measure gradients of color srt gain for minimum (00), center (10), and maximum (11). calculate g sr01cen and g sr01max . 20% 100% t *** 20% v *** gradient s *** = v *** /t ***
TA1360AFG 2005-08-18 71 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw64 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) c a a b sw63 sw61 sw60 sw74 s02 dynamic y/c compensation b b b open 1. input 100-khz sync signal to tp67, and set #67 amplitude to 0.2 vp-p. 2. set y mute off (p-mode: normal 1, 000), brightness to center (1000000), color to center (1000000), unicolor to maximum (1111111), and y/c gain comp to minimum (00). set black stretch point 1 to off (000), dark area static y gain to minimum (00), light area static y gain to maximum (11), and sw1 to b. apply 5.16 v to #68 from external power supply ps1. 3. monitor #14 output waveform, and measure amplitude vbdy0. 4. set y/c gain comp to maximum (11). set sw1 to b. set black stretch point 1 to off (000), dark area static y gain to maximum (11), light area static y gain to maximum (00), and monitor #14 amplitude vbdy1. 5. set y/c gain comp to maximum (11). switch sw1 to a, and tpi to gnd. set black stretch point 1 to maximum (111), dark area static y gain to minimum (00), bright area static y gain to maximum (11), and monitor #14 amplitude vbdy2. 6. calculate the following equations. gc bdy1 = 20 og l (vbdy1/vbdy0), gc bdy2 = 20 og l (vbdy2/vbdy0) 7. input 100-khz sync signal to tp5, and repeat the procedure above. calculate the following equations. gc rdy1 = 20 og l (vrdy1/vrdy0), gc rdy2 = 20 og l (vrdy2/vbdy0)
TA1360AFG 2005-08-18 72 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw64 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) a/c a/b a/b b sw8 sw9 sw10 sw56 s03 yuv gain b b b open 1. set picture mute to off (p-mode: normal 1, 000), brightness to maximum (11111111), color to center (1000000), and unicolor to maximum (1111111). 2. set sw68 to a. set sw67 and sw66 to b, and input 100-khz sine wave to tpa. set #68 amplitude to 0.2 vp-p. 3. set sw74 open. measure #74 amplitude vy00 and vy01 when y/color difference input mode is set to y/cb/cr (0) and y/pb/pr (1). 4. set sw68 to c, sw67 to a, and sw66 to b. input 100-khz sine wave to tp67, and set #67 amplitude to 0.2 vp-p. 5. measure #14 amplitude vb00 when y/color difference input mode is set to y/cb/cr (0). 6. measure #14 and #12 amplitude vbb01 and vbr01 when y/color difference input mode is set to y/pb/pr (1). 7. set sw68 to c, sw67 to b, and sw66 to a. input 100-khz sine wave to tp66, and set #66 amplitude to 0.2 vp-p. 8. measure #12 amplitude vr00 when y/color difference input mode is set to y/cb/cr (0). 9. measure #14 and #12 amplitude vrb01 and vrr01 when y/color difference input mode is set to y/pb/pr (1). 10. calculate the following equations. g y00 = 20 og l (vy00/0.2), g y01 = 20 og l (vy01/0.2) g cbb = 20 og l (vb00/0.2), g pbb = 20 og l (vbb01/0.2), g pbr = 20 og l (vbr01/0.2) g crr = 20 og l (vr00/02), g prb = 20 og l (vrb01/0.2), g prr = 20 og l (vrr01/0.2)
TA1360AFG 2005-08-18 73 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw64 test method (test condition: v cc = 9 v/2 v, ta = 25 3 c) c a a ? sw26 sw25 sw24 sw21 a a a a sw19 sw18 ? ? s04 green stretch a a ? ? 1. input signal b as shown in the figure below from tp67 (cb/pb1 input), and signal a from tp66 (cr/pr input). 2. set brightness [06] to maximum (ff). 3. measure amplitudes a, b, c, d, and e at #13 (gout) as shown in the figure below. (a00 to e00) 4. set green stretch [14] data to (08), and repeat the step 3 above. (a01 to e01) 5. set green stretch [14] data to (10), and repeat the step 3 above. (a10 to e10) 6. set green stretch [14] data to (18), and repeat the step 3 above. (a11 to e11) 7. green stretch gain is calculated by the following equations a00 a01 gra01 = a00 a10 gra10 = a00 a11 gra11 = b00 b01 grb01 = b00 b10 grb10 = b00 b11 grb11 = c00 c01 grc01 = c00 c10 grc10 = c00 c11 grc11 = d00 d01 grd01 = d00 d10 grd10 = d00 d11 grd11 = e00 e01 gre01 = e00 e10 gre10 = e00 e11 gre11 = signal a 0.05 v p - p ? ? 0 vp-p ? 0.1 vp-p signal b ? 0.07 vp-p ? 0.122 vp-p ? ? 0.122 vp-p 0 vp-p b pin 13 e d c a 150 270 240 210 180
TA1360AFG 2005-08-18 74 test conditions for color difference block 2 common test conditions for color difference block 2 1. sw71 = b, sw70 = b, sw61 to sw63 = b, sw44 = on, sw40 = b 2. unless otherwise specified, measure each bus data with preset values. 3. set the following data. subaddress (00) data (02) subaddress (02) data (0c) subaddress (05) data (7f) subaddress (06) data (6c) subaddress (07) data (40) subaddress (0b) data (7f) subaddress (0c) data (84) subaddress (12) data (f0) subaddress (13) data (f0) subaddress (15) data (00) subaddress (18) data (00) subaddress (1a) data (c0) subaddress (1b) data (e0) subaddress (1c) data (03) subaddress (1d) data (78) test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method a01 color difference contrast adjustment characteristic c a or b a or b a a a a a a 1. set brightness to maximum, and subaddress (12) data to (f0). 2. input signal 3 (f 0 = 100 khz, picture period amplitude = 0.23 vp-p) from pin 66. 3. change unicolor data to maximum (7f), center (40), and minimum (00), and measure pin 12 picture period amplitude v ucymax , v ucycnt , and v ucymin respectively. 4. determine unicolor amplitude ratio between maximum and minimum in decibels. ( ? v ucy ) 5. repeat the steps 2 to 4 above with the following pins: input (picture period amplitude 0.2 vp-p) from pin 67, and measure pin 14.
TA1360AFG 2005-08-18 75 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method a02 color adjustment characteristic c a or b a or b a a a a a a 1. set brightness to maximum, and subaddress (12) data to (f0). 2. input signal 3 (f 0 = 100 khz, picture period amplitude = 0.115 vp-p) from pin 66. 3. change color data to maximum (7f), center (40), and minimum (01), and measure pin 12 picture period amplitudes v ccymax v ccycnt , and v ccymin respectively. 4. calculate amplitude ratios of maximum and minimum against color center in decibels. ( ? v ccy ) 5. repeat the steps 2 to 4 above with the following pins: input (picture period amplitude 0.1vp-p) from pin 67 and measure pin 14. a03 color difference halftone characteristic c a or b a or b a a a a a a 1. input signal 3 (f 0 = 100 khz, picture period amplitude 0.2 vp-p) from pin 66. 2. measure pin 12 output picture period amplitude vhtary. 3. apply 1.5 v to pin 79 from external power supply. 4. measure pin 12 output picture period amplitude vhtbry. 5. calculate ght ry = vhtbry/vhtary 6. repeat the steps 1 to 5 above and measure pin 13. calculate ght gy = vhtbgy/vhtagy 7. repeat the steps 1 to 5 above and measure pin 67. calculate ght by = vhtbby/vhtaby.
TA1360AFG 2005-08-18 76 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method a04 color characteristic c b a a a a a a a 1. input signal 2 from pin 66. 2. increase signal 2 amplitude a. determine gamma correction point v 1, v 2, and v 3 of subaddress data (14). set subaddress (14) data as follows: (01) ? off (03) ? 1on (05) ? 2on (07) ? 3on measure #12 output signal amplitude levels and chart a characteristic diagram. 3. determine v where starts applying and gradient ? at on when linearity at off is 1. #12 output amplitude #66 input amplitude v off on
TA1360AFG 2005-08-18 77 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method a05 color limiter characteristic c b a a a a a a a 1. input signal 2 (picture period amplitude = 0.56 vp-p) from pin 67. 2. set subaddress (14) to (00)/(01), and measure pin 12 output signal picture period amplitude, clt 0 /clt 1 . a06 high-bright color gain c b a a a a a a a 1. input signal 2 (picture period amplitude = 0.28 vp-p) from pin 67. 2. adjust color so that pin 14 output picture period amplitude is 1.2 vp-p. 3. set subaddress (0b) data to (80) and measure pin 14 output signal picture period amplitude v 14 . 4. calculate the following equation. hbc 1 = (1.2 ? v 14 )/1.2
TA1360AFG 2005-08-18 78 test conditions for text block common test conditions for text block 1. sw71 = b, sw70 = b, sw60 to sw64 = b, sw44 = on, sw40 = b 2. unless otherwise specified, measure each bus data with preset values. 3. set the following data. subaddress (00) data (02) subaddress (02) data (0c) subaddress (05) data (7f) subaddress (06) data (6c) subaddress (07) data (40) subaddress (0b) data (7f) subaddress (0c) data (84) subaddress (12) data (f0) subaddress (13) data (f0) subaddress (15) data (00) subaddress (18) data (00) subaddress (1a) data (c0) subaddress (1b) data (e0) subaddress (1c) data (03) subaddress (1d) data (78) test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t01 ac gain a b b a a a a a a 1. input signal 1 (f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. 2. measure pins 12, 13, and 14 picture period amplitude, v 12 , v 13 , and v 14 . 3. calculate ac gain using the following equations. g r = v 12 /0.2 g g = v 13 /0.2 g b = v 14 /0.2 t02 y frequency characteristic 2 a b b a a a a a a 1. set apacon f0 to (00), srt gain to minimum, sharpness gain to (1f) and sub-contrast to (c). 2. input signal 1 (f 0 = 1 mhz, picture period amplitude = 0.7 vp-p) from pin 68. 3. measure pins 12, 13 and 14 picture period amplitude, g fy1 . 4. calculate the difference among dc center voltages of rgb output amplitudes, v ydc1 . 5. as well, measure g fy15 and g fy30 against each input with f 0 = 15 or 30 mhz. calculate the difference among dc center voltages of rgb output amplitudes, v ydc15 . and v ydc30 .
TA1360AFG 2005-08-18 79 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t03 unicolor adjustment characteristic a b b a a a a a a 1. input signal 1 (f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. 2. change unicolor data to maximum (7f), center (40), and minimum (00) and measure pin 12 picture period amplitude, v umax , v ucnt , and v umin respectively. 3. calculate amplitude ratio of v umax and v umin in decibels ( ? v u ) t04 brightness adjustment characteristic a b b a a a a a a 1. input signal 2 from pin 68 and adjust pin 12 picture period output amplitude to 1 vp-p. 2. change brightness data to maximum (7f), center (80), and minimum (00) and measure pin 12 voltages, v brmax , v brcnt , and v brmin respectively. t05 white peak slice level c b b a a a a a a 1. set subcontrast to maximum. 2. apply external power supply to pin 68 and gradually increase voltage from 5.8 v. 3. when picture period of pin 12 is clipped, measure pin 12 picture period amplitude voltage, v wps1 . 4. change subaddress (0c) data to (fc) and repeat the steps 1 to 3 above. (v wps2 ) t06 black peak slice level c b b a a a a a a 1. apply external power supply to pin 68 and gradually decrease voltage from 5.8 v. 2. when picture periods are clipped, measure pins 14, 13, and 12 voltage, v bps . t07 rgb output s/n c b b a a a a a a 1. adjust brightness data so that picture period voltage of pin 14 is 2.4 v. 2. set color data to minimum. 3. measure noise levels n14-, n13-, and n12-vp-p in picture period of pin 14, 13, and 12 with an oscilloscope. 4. calculate s/n. n 14 = ? 20 og l [2.3/(0.2 n14)] n 13 = ? 20 og l [2.3/(0.2 n13)] n 12 = ? 20 og l [2.3/(0.2 n12)] t08 halftone characteristic a b b a a a a a a 1. input signal 1 (f 0 = 100 khz, picture period amplitude 0.2 vp-p) from pin 68. 2. measure pin 14 picture period amplitude v14a. 3. apply 1.5 v to pin 79 from external power supply. 4. measure pin 14 picture period amplitude v14b 5. calculate the following equation. g ht1 = v14b/v14a 6. stop applying voltage to pin 79. set subaddress (1a) to data (e2) and measure pin 14-picture period amplitude, v14c. 7. calculate the following equation. g ht2 = v414c/v14a
TA1360AFG 2005-08-18 80 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t09 blk pulse delay time c b b a a a a a a 1. apply signal shown in the figure (a) below to pin 39 (blk input), and measure td on and td off of output signals from pins 12, 13, and 14 shown in the figure (b) below. 63.5 s td on td off (a) appling signal to pin 39 (b) output signal from pins 12, 13, and 14
TA1360AFG 2005-08-18 81 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t10 drive adjustment variable range a b b a a a a a a 1. input signal 1 (f 0 = 100 khz, picture period amplitude 0.2 vp-p) from pin 68. 2. measure picture period amplitude of pin 13 when subaddress (0d) data is changed to maximum (fe), center (80), and minimum (00). 3. use picture period amplitude at center as the base. determine amplitude ratio dr g1 + and dr g1 ? at maximum and minimum in decibels. 4. repeat the steps 1 to 3 above to measure amplitude ratio of pin 14, dr b1 + and dr b1 ? in decibels when subaddress (0e) data is changed. 5. repeat the steps 1 to 3 above to measure amplitude ratio of pin 13, dr g2 + and dr g2 ? in decibels when subaddress (0e) center data is set to (81) used as the base. 6. repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, dr b2 + and dr b2 ? in decibels when subaddress (0e) data is changed to maximum (ff), center (81), and minimum (01). 7. repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, dr r1 + and dr r2 ? in decibels when subaddress (0d) data is changed to maximum (ff), center (81), and minimum (01). 8. repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 14, dr b3 + and dr b3 ? in decibels when subaddress (0d) data is set to (81), and subaddress (0e) data is changed. 9. repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 13, dr g3 + and dr g3 ? in decibels when subaddress (0e) data is set to (81), and subaddress (0d) data is changed to maximum (ff), center (81), and minimum (01). 10. repeat the steps 1 to 3 above to measure picture period amplitude ratio of pin 12, dr r2 + and dr r2 ? in decibels when subaddress (0d) data is set to (81), and subaddress (0e) data is changed to maximum (ff), center (81), and minimum (01). t11 #78 input impedance c b b a a a a a a 1. connect external power supply, an ammeter, and a voltmeter to pin 78. adjust voltage so that current value is set to zero. 2. measure the current when voltage of pin 78 is increased by 0.2v. (l in ) 3. calculate the following equation. in53 = 0.2 v/i in ( ? ) ?+ ammeter ( a) voltmeter 78 a v
TA1360AFG 2005-08-18 82 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t12 acl characteristic a b b a a a a a a 1. input signal 1 (f 0 = 100 khz, picture period amplitude 0.2 vp-p) from pin 68. 2. measure pin 12 picture period amplitude, vacl1. 3. apply ?dc voltage of pin 78 ? 0.8 v? to pin 78 from external power supply and measure pin 12-picture period amplitude, vacl2. 4. apply ?dc voltage of pin 78 ? 1.3 v? to pin 78 from external power supply and measure pin 12-picture period amplitude, vacl3. 5. calculate the following equations. acl 1 = ? 20 og l (vacl2/vacl1) acl 2 = ? 20 og l (vacl3/vacl1) t13 abl point c b b a a a a a a 1. measure dc voltage of pin 78, vabl1. 2. set subaddress (1b) data to (1c). 3. apply external voltage to pin 78, and decrease voltage from 6.5 v. when voltage of pin 12 starts changing, measure pin 78 voltage, vabl2. 4. change subaddress (1b) data to (3c), (5c), (7c), (9c), (bc), (dc), and (fc) under the status of the step 3 above. measure pin 78 voltage: vabl3, vabl4, vabl5, vabl6, vabl7, vabl8, and vabl9. 5. abl p1 = vabl2 ? vabl1 abl p5 = vabl6 ? vabl1 abl p2 = vabl3 ? vabl1 abl p6 = vabl7 ? vabl1 abl p3 = vabl4 ? vabl1 abl p7 = vabl8 ? vabl1 abl p4 = vabl5 ? vabl1 abl p8 = vabl9 ? vabl1
TA1360AFG 2005-08-18 83 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t14 abl gain c b b a a a a a a 1. apply 6.5-v external voltage to pin 78. 2. set subaddress (1b) data to (00). 3. set brightness data to maximum. 4. apply 4.5-v external voltage to pin 78. 5. change subaddress (1b) data to (00), (04), (08), (0c), (10), (14), (18), and (1c). repeat the step 3 above, and measure vabl11, vabl12, vabl13, vabl14, vabl15, vabl16, vabl17, and vabl18. 6. abl g1 = vabl11 ? vabl10 abl g2 = vabl12 ? vabl10 abl g3 = vabl13 ? vabl10 abl g4 = vabl14 ? vabl10 abl g5 = vabl15 ? vabl10 abl g6 = vabl16 ? vabl10 abl g7 = vabl17 ? vabl10 abl g8 = vabl18 ? vabl10 t15 rgb output mode c b b a a a a a a 1. adjust brightness data so that picture period voltage of pin 12 is 2.4 v. 2. set subaddress (1b) data to (01). 3. measure pins 12, 13, and 14 picture period voltage, v 12r , v 13r , and v 14r . 4. set subaddress (1b) data to (02), and repeat the step 3 above. measure pins 12, 13, and 14 picture period voltage, v 12g , v 13g , and v 14g . 5. set subaddress (1b) data to (03), and repeat the step 3 above. measure pins 12, 13, and 14 picture period voltage, v 12b , v 13b , and v 14b .
TA1360AFG 2005-08-18 84 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t16 y-out characteristic a b b a a a a a a 1. input ramp waveform from pin 68. adjust input amplitude so that picture period amplitude of pin 12 is 2.3 vp-p. 2. set subaddress (0c) data to (81). 3. adjust input amplitude so that picture period amplitude of pin 12 is 2.3 vp-p. 4. monitor pin 12. according to the figure below, determine y-out correction start points 1 and 2. also determine ratios of gradients at y-out on to y-out off in decibel. ( ? 1, ? 2, and ? 3) 100 ire 2 1 output amplitude (y-out) input amplitude 2.3 vp-p ? 1 ? 2 ? 3 note: solid line indicates gamma off. dotted line indicates gamma on.
TA1360AFG 2005-08-18 85 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t17 white-peak blue characteristic a b b a a a a a a 1. input 0.7-vp-p ramp signal from pin 68. 2. set subcontrast data to maximum. 3. set subaddress (1f) data to (04). 4. set subaddress (1e) data to (01), and monitor pin 14. determine blue stretch start point bs pmin using the figure below. 5. repeat the step 4 above by changing subaddress (1e) data to (04) and (07). determine blue stretch start point bs pcnt and bs pmax . 6. set subaddress (1e) data to (04). 7. monitor pin 14 and calculate ratio of blue stretch on gradient in relative to blue stretch off gradient in decibel (bs gcnt ) using the figure below. 8. repeat the step 7 above by changing subaddress (1f) data to (00) and (07). calculate gradient ratio in decibel (bs gmin and bs gmax ). note: calculate white-peak blue start point in ire as setting positive amplitude at pedestal level of output signal to 2.3 vp-p = 100 ire. on off start point output input amplitude (output from pin 14)
TA1360AFG 2005-08-18 86 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t18 acb insertion pulse phase and amplitude a or c b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. set brightness data to 108. 2. measure pins 4, 6, and 7 voltage. apply measured voltages from external power supply. 3. set subaddress (02) data to (40). 4. use output signals from pins 12, 13, and 14, and measure acb insertion pulse phase as shown in the figure 1. note: take picture period following fbp input fall after v ? blk ends as phase 1h. after next h ? blk, count the phase as 2h, 3h, and so on. 5. monitor pins 12, 13, and 14. measure acb insertion pulse amplitudes (level from picture period amplitude at quiescent.): vacb1r, vacb1g, and vacb2b. 6. set subaddress (02) data to (80), and repeat the step 5 above: vacb2r, vacb2g, and vacb2b. 7. set subaddress (02) data to (c0), and repeat the step 5 above: vacb3r, vacb3g, and vacb3b. figure 1: rgb output acb insertion pulse 1h 2h 3h 4h v ? blk period figure 2: fbp input (#39)
TA1360AFG 2005-08-18 87 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t19 ik input amplitude a or c b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. set subaddress (02) data to (40). 3. measure voltage amplitude of pin-8 input signal in acb insertion period. 1h = ik r 2h = ik g 3h = ik b t20 ik input cover range c b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. set subaddress (02) data to (40). 3. measure pin 8 dc voltage in v ? blk period. (#8vblk) 4. apply the current externally to pin 8. 5. measure dc voltage of pin 8 in v ? blk period when pin-12 picture period voltage begins to be decreased. (#8vblk + ) 6. apply current outward from pin 8. 7. measure dc voltage of pin 8 in v ? blk period when pin-12 picture period voltage begins to be increased. (#8vblk ? ) 8. dik in + = (#8vblk + ) ? (#8vblk) dik in ? = (#8vblk ? ) + (#8vblk) t21 analog rgb gain a b b a or b a or b a or b a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pin 2. 3. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 24. 4. measure pin 12 picture period amplitude, v12r. 5. repeat the steps 3 and 4 above with the following pins: input from pin 25, and measure output from pin 13 (v13g). input from pin 26, and measure output from pin 14 (v14b). 6 calculate the following equations. gtxr = v12r/0.2 gtxg = v13g/0.2 gtxb = v14b/0.2 t22 analog rgb white peak slice level a b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pin 2. 3. set rgb contrast data to maximum (7f). 4. input signal 2 to pin 24. gradually increase picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 5. repeat the steps 3 and 4 above with following pins: input from pin 25 and measure output from pin 13. input from pin 26 and measure output pin 14.
TA1360AFG 2005-08-18 88 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t23 analog rgb black peak limit level a b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pin 2. 3. set rgb contrast data to maximum (7f). 4. input signal 2 to pin 24. gradually decrease picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 5. repeat the step 4 above with the following pins: input from pin 25 and measure output from pin 13. input from pin 26 and measure output pin 14. t24 rgb contrast adjustment characteristic a b b a or b a or b a or b a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pin 2. 3. input signal 1 (f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 24. 4. rgb contrast data to maximum (7f), center (40), and minimum (00). measure pin 12 picture period amplitudes v utxr (maximum, center, and minimum) respectively. 5. calculate amplitude ratio of maximum and minimum in decibels. 6. repeat the steps 4 and 5 above with the following pins: input from pin 25 and measure pin 13. input from pin 26 and measure pin 14. t25 analog rgb brightness adjustment characteristic a b b a or b a or b a or b a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. input signal 2 from pins 26, 25, and 24. 3. apply 5-v external voltage to pin 2. 4. adjust amplitude a of signal 2 so that picture period amplitude of pin 12 is 0.5 vp-p. 5. change rgb brightness data to maximum (fe), center (80), and minimum (00). measure pins 12, 13, and 14 picture period voltage v brtx (maximum, center, and minimum) respectively. t26 analog rgb mode switching transfer characteristic c b b a a a a a a 1. set rgb brightness data to maximum (fe). 2. input signal 4 (signal amplitude = 1.5 vp-p) from pin 2. 3. measure input/output transfer characteristics using pin 12 according to the figure t-2. 4. repeat the steps 2 and 3 above with the following pins: input from pin 25 and measure pin 13. input from pin 24 and measure pin 14. 5. calculate maximum inter-axial rise/fall transfer delay time, using the data measured above.
TA1360AFG 2005-08-18 89 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t27 text acl characteristic a b b a a b a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pin 2. 3. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 24. 4. measure pin 12 picture period amplitude, vtxacl1. 5. apply ?pin 78 dc voltage ? 0.8 v? to pin 78 from external power supply, and measure pin 12-picture period amplitude, vtxacl2. 6. apply ?pin 78 dc voltage ? 1.3 v? to pin 78 from external power supply, and measure pin 12-picture period amplitude, vtxacl3. 7. txacl 1 = ? 20 og l (vtxacl2/vtxacl1) txacl 2 = ? 20 og l (vtxacl3/vtxacl1) t28 analog osd gain a b b a a a a or b a or b a or b 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pins 1 and 80. 3. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 18. 4. measure pin 12 picture period amplitude, v12r. 5. repeat the steps 3 and 4 above with the following pins: input from pin 19, and measure pin 13. input from pin 21 and measure pin 14. (v13g and v14b) 6. calculate the following equations. g osdr = v12r/0.2 g osdg = v13g/0.2 g osdb = v14b/0.2 t29 analog osd input white peak slice level a b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pins 1 and 80. 3. input signal 2 from pin 18. gradually increase picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 4. repeat the step 3 above with the following pins: input from pin 19, and measure pin 13. input from pin 21, and measure pin 14. t30 analog osd black peak limit level a b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pins 1 and 80. 3. input signal 2 from pin 18. gradually decrease picture amplitude, and measure picture period amplitude voltage when output from pin 12 is clipped. 4. repeat the step 3 above with the following pins: input from pin 19, and measure pin 13. input from pin 21, and measure pin 14.
TA1360AFG 2005-08-18 90 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t31 osd contrast adjustment characteristic a b b a a a a or b a or b a or b 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pins 1 and 80. 3. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 18. 4. change osd contrast data to (11), (10), (01), and (00). measure pin 12 picture period amplitude v uosdr (11), (10), (01), and (00) respectively. 5. repeat the steps 3 and 4 above with the following pins: input from pin 19, and measure pin 13, v uosdg (11), (10), (01), and (00). input from pin 21, and measure pin 14, vuosdb (11), (10), (01), and (00). t32 analog osd brightness adjustment characteristic c b b a a a a a a 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. apply 5-v external voltage to pins 1 and 80. 3. change osd brightness data (subaddress 1d) to (38), (78), (b8), and (f8), and measure picture period voltage of pins 12, 13, and 14 respectively. data (38) = v brosd0 data (78) = v brosd1 data (b8) = v brosd2 data (f8) = v brosd3 t33 analog osd mode switching transfer characteristic c b b a a a a a a 1. set osd brightness data to maximum (11). 2. input signal 4 (signal amplitude = 4.5 vp-p) from pin 1. 3. measure input/output transfer characteristics using pin 12 according to the figure t-2. 4. repeat the steps 2 and 3 above, and measure pins 13 and 14. 5. calculate maximum inter-axial rise/fall transfer delay time, using the data measured above. 6. repeat the steps 1 to 5 above with the following pin. input signal 4 (signal amplitude 4.5 vp-p) from pin 80.
TA1360AFG 2005-08-18 91 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t34 osd acl characteristic a b b a a a a a b 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. control drive gain adjustment data so that pins 14 and 13 picture period amplitude equals that of pin 12. 2. set subaddress (07) data to (01). 3. apply 5-v external voltage to pins 1 and 80. 4. input signal 1 (f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 18. 5. measure pin 12 picture period amplitude, vosdacl1. 6. apply ?pin 78 dc voltage ? 0.8 v? to pin 78 from external power supply, and measure pin 12-picture period amplitude, vosdacl2. 7. apply ?pin 78 dc voltage ? 1.3 v? to pin 78 from external power supply, and measure pin 12-picture period amplitude, vosdacl3. 8. osdacl 1 = ? 20 og l (vosdacl2/vosdacl1) osdacl 2 = ? 20 og l (vosdacl3/vosdacl1) 9. osdacl3 osdacl4 change subaddress (07) data to (80), and repeat the steps 6 to 8 above to measure osdacl3 and osdacl4.
TA1360AFG 2005-08-18 92 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t35 osd blending characteristic a c b b a a a a b a b b b 1. input signal 1(f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pin 68. 2. measure pins 14, 13, and 12 picture period amplitude, v14a, v13a, and v12a. 3. apply 5-v external voltage to pin 80. 4. measure pins 14, 13, and 12 picture period amplitude, v14b, v13b, and v12b. 5. calculate v14b amplitude in relation to v14a, v13b amplitude in relation to v13a, and v12b amplitude in relation to v12a in decibel: 14tv1, 13tv1, and 12tv1. 6. apply 5-v external voltage to pin 1, and repeat the steps 3 to 5 above: 14tv2, 13tv2, and 12tv2. 7. apply 5-v external voltage to pins 1 and 80, and repeat the steps 3 to 5 above: 14tv3, 13tv3, and 12tv3. 8. set sw68 to c. set sw21, 19, and 18 to b. 9. input signal 1 (f 0 = 100 khz, picture period amplitude = 0.2 vp-p) from pins 21, 19, and 18. 10. apply 5-v external voltage to pins 1 and 80. 11. measure pins 14, 13, and 12 picture period amplitude, v14c, v13c, and v12c. 12. apply 5-v external voltage to pin 1. 13. measure pins 14, 13, and 12 picture period amplitude, v14d, v13d, and v12d. 14. calculate v14d amplitude in relation to v14c, v13d amplitude in relation to v13c, and v12d amplitude in relation to v12c in decibel: 14osd1, 13osd1, and 12osd1. 15. apply 5-v external voltage to pin 80, and repeat the steps 12 to 14 above: 14osd2, 13osd2, and 12osd2. 16. apply 5-v external voltage to pins 1 and 80, and repeat the steps 12 to 14 above: 14osd3, 13osd3, and 12osd3.
TA1360AFG 2005-08-18 93 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t36 blue stretch point/gain a b b a a a a a a 1. input ramp signal 0.7 vp-p from pin 68. 2. set subcontrast data to maximum. 3. set subaddress (15) data to (0c). 4. set subaddress (1a) data to (c0), monitor pin 14, and measure blue stretch start point using the figure below (blp min ). 5. set subaddress (1a) data to (cc), and repeat the step 4 above. (blp max ) 6. set subaddress (1a) data to (c4). 7. monitor pin 14 and measure gradient at blue stretch on in decibel in relation to the one at blue stretch off according to the figure below. (blg max ) 8. set subaddress (15) data to (04), and repeat the step 7 above. (blg min ) note: calculate blue stretch start point in ire as setting positive amplitude at pedestal level of output signal to 2.3 vp-p = 100 ire. blue stretch on blue stretch off output amplitude input amplitude
TA1360AFG 2005-08-18 94 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t37 blue stretch gamma correction a b b a a a a a a 1. input ramp signal 0.7 vp-p from pin 68. 2. set subcontrast data to maximum. 3. set subaddress (15) data to (08). 4. set subaddress (09) data to (81). 5. monitor pin 14 and measure amplitude of the intersection point of blue stretch off and blue stretch on according to the figure below. calculate pin 14 output amplitude in ire as setting positive amplitude at pedestal level of output signal to 2.3 vp-p = 100 ire. 6. set subaddress (1a) data to (c4), (c8), and (cc). repeat the step 5 above. (bl 2, bl 3, and bl 4) blue stretch off blue stretch on output amplitude input amplitude intersection poiint bl
TA1360AFG 2005-08-18 95 test conditions sw mode note no. characteristics sw68 sw67 sw66 sw26 sw25 sw24 sw21 sw19 sw18 test method t38 white letters improvement a b b a a a a a a 1. apply a pulse to pin 68 as shown in figure a. 2. monitor # 12 output waveform. plot # 12 output amplitude when changing # 68 input signal amplitude from 0 to 120 ire (0.857 vp-p) (see figure b below). 3. set subaddress (19) data to (80). 4. monitor # 12 output waveform. plot # 12 output amplitude when changing # 68 input signal amplitude from 0 to 120 ire (0.857 vp-p). then, compare to the plot in the step 2, calculate a point where a gradient changes (wpl1). 5. repeat the step 4 above by changing subaddress (19) data to (83) and (86). calculate points where gradients change (wpl2, wpl3). figure a 80 ns # 12 output amplitude data 87 data 86 data 83 data 80 figure b # 68 input amplitude wpl2 wpl3 wpl1
TA1360AFG 2005-08-18 96 test condition for synchronization block common test conditions for synchronization block: unless otherwise specified, v cc = 9 v, ta = 25c, bus data; preset value, sw68 = a, sw53 = a, sw input = b, sw44 = on, sw41 = open, sw40 = b, sw39a = b, sw39b = open, sw37 = b note characteristics test conditions ha01 sync input horizontal sync phase 1. input signal a (as shown in the figure below) to tpa. set subaddress (00) data to 82h. 2. monitor # 53 (sync input) and #44 (afc filter) waveforms. measure phase difference (s ph ). ha02 hd input horizontal sync phase 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50. 3. monitor #50 (sync input) and #44 (afc filter) waveforms. measure phase difference (hd ph ). 29.36 s 0.285 v 0.593 s signal a #44 waveform s ph 31.75 s 1.5 v 2.35 s signal b #44 waveform hd ph
TA1360AFG 2005-08-18 97 note characteristics test conditions ha03 polarity detection range 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50 pin. 3. decrease signal b duty from 10% (to shorter negative polarity period) and measure signal b duty (hd duty1 ) when #50 input signal phase no longer locks with that of #37 (h-out). 4. increase signal b duty from 10% (to longer negative polarity period) and measure signal b duty (hd duty2 ) when #39 (fbp input) phase changes in relation to signal b. 5. further increase signal b duty (to longer negative polarity period) and measure signal b duty (hd duty3 ) when #50 input signal phase no longer locks with that of #37 (h-out). 6. decrease signal b duty from 90 % (to shorter negative polarity period) and measure signal b duty (hd duty4 ) when #39 (fbp input) phase changes in relation to signal b. duty = a/b 100% (0 to 100%) ha04 sync input threshold amplitude 1. set subaddress (00) data to 82h, and test mode to 01. 2. connect variable power supply to #53 via 20-k ? resistor. 3. set variable power supply voltage to 0 v, and measure #53 voltage. (sync_tip_00) also check that #34 voltage is set to low (gnd level). 4. increase variable power supply voltage so that #34 voltage becomes high (vcc level). measure #53 voltage. (sync_off_00) 5. calculate the following equation to determine sync input separation level at sync separation level is 00. v ths00 = (sync_off_00 ? sync_tip_00)/0.286 100 6. change sync separation level to 01, 10, and 11. calculate following equations to determine vths01, vths10, and vths11. v ths01 = (sync_off_01 ? sync_tip_01)/0.286 100 v ths10 = (sync_off_10 ? sync_tip_10)/0.286 100 v ths11 = (sync_off_11 ? sync_tip_11)/0.286 100 31.75 s 1.5 v signal b a b sync separation level 0.08h 40ire ( = 286 mvp-p) 53 1h sync tip level 34 (sync output mode
TA1360AFG 2005-08-18 98 note characteristics test conditions ha05 hd input threshold amplitude 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50. 3. increase signal b amplitude from 0 vp-p. when #37 (h-out) phase locks with that of signal b, measure signal b amplitude v thhd . ha06 horizontal picture phase adjustment variable range 1. set subaddress (00) data to 40h. 2. input signal b (the figure is shown below) to tp50. 3. change subaddress (01) data from 80h to 00h, and measure phase change amount ? h sft ? of #39 (h-out) waveform. 4. change slave address (01) data from 80h to feh, and measure phase change amount ? h sft + of #39 (h-out) waveform. 31.75 s v thdh 2.35 s signal b 31.75 s 1.5 v 2.35 s signal b #39 waveform data: 00h ? h sft ? ? h sft + #39 waveform data: feh #39 waveform data: 80h
TA1360AFG 2005-08-18 99 note characteristics test conditions ha07 curve correction amount 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50. 3. connect external voltage to #40 (curve correction), and measure phase change amount ( ? h#40) of #37 (h-out) output waveform at 1.5 v and 3.5 v. ha08 clamp pulse phase, width and level 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50. 3. measure #47 (scp output) clamp pulse phase (cp s0 ), width (cp pw0 ), and output level (cp v0 ) in relation to signal b. 4. set subaddress (01) data to 81h, and repeat the step 3 above to measure (cp s1 ), (cp w1 ), and (cp v1 ). 5. apply no signal input to tp50. 6. measure #47 clamp pulse phase (cp s2 ), width (cp w2 ), and output level (cp v2 ) in relation to #39. 31.75 s 1.5 v 2.35 s signal b #37 waveform (#40 voltage; 1.5 v) ? h#40 #37 waveform (#40 voltage; 3.5 v) 31.75 s 1.5 v 2.35 s signal b #47 waveform #39 waveform cp v0/1 cp w0/1 cp s0/1 #47 waveform cp v2 cp w2 cp s2
TA1360AFG 2005-08-18 100 note characteristics test conditions ha09 black peak detection pulse phase and level 1. set subaddress (00) data to 40h. 2. set sw70 to c, sw68 to c, and sw39a to open 3. input signal c (as the figure shown below) to #39 (fbp input). 4. measure #70 (bph filter) black peak detection pulse phase (hbp s00a and hbp s00b ) in relation to signal c. 5. set hbp-phs 1/2 to (01), (10), and (11). measure black peak detection pulse phase. ha10 fbp input threshold 1. set subaddress (00) data to 40h. 2. input signal b (as shown in the figure below) to tp50. 3. increase amplitude of fbp signal to be input to #39 (fbp input) from 0 vp-p. when #37 (h-out) phase locks with that of signal b, measure #39 input amplitude v thfbp . 31.75 s 1.5 v 2.35 s 31.5 s 2 v 0 v signal c #70 waveform 4.13 s hbp s ** b hbp s ** a
TA1360AFG 2005-08-18 101 note characteristics test conditions hb01 h-out pulse duty 1. no signal input. 2. measure t1 and t2 (as shown in the figure below) from #37 (h-out) output waveform when subaddress (00) data is 80h and a0h. calculate duties (th a and th b ) using the following equation: th = t1/(t1 + t2) 100 % hb02 horizontal free-run frequency 1. set sw44 to open. 2. set subaddress (00) data to 01h and measure horizontal free-run frequency (f15k) according to #37 (h-out) output waveform. 3. set subaddress (00) data to 00h, 41h, 81h, c0h, and c1h. measure horizontal free-run frequency f28k, f31k, f33k, f37k, and f45k as in the step 2 above. hb03 horizontal oscillation frequency variable range 1. set subaddress (00) data to 01h. 2. connect 10-k ? resistor between #44 and v cc . measure horizontal frequency (f15k min ) according to #37 (h-out) output waveform. 3. connect 68-k ? resistor between #44 and gnd. measure horizontal frequency (f15k max ) according to #37 (h-out) output waveform. 4. set subaddress (00) data to 00h, 41h, 81h, c0h, and c1h. repeat the steps 2 and 3 above and measure horizontal frequencies f28k min , f28k max , f31k min , f31k max , f33k min , f33k max , f37k min , f37k max , f45k min , and f45k max . hb04 horizontal oscillation control sensitivity 1. set sw44 to open. 2. connect external power supply to tp44, and set subaddress (00) data to 01h. 3. apply v 44 + 0.05 v, and v 44 ? 0.05 v to tp44. measure frequencies fa and fb according to #37 (h-out) output waveform. calculate frequency change rate (bh15k) using the following equation. bh15k = (fb ? fa)/0.1 4. set subaddress (00) data to 00h, 41h, 81h, c0h, and c1h. repeat the step 2 above, and measure frequency change rate bh28k, bh31k, bh33k, bh37k, and bh45k hb05 h-out output voltage 1. set sw37 to open. 2. measure voltage at high (v37 h ) and low (v37 l ) of #37 (h-out) output waveform. #37 waveform t1 t2
TA1360AFG 2005-08-18 102 note characteristics test conditions v01 vp output pulse width, vertical free-run (maximum pull-in range) 1. input signal d (shown in the figure below) to tp50, and signal e (shown in the figure below) to #39 (fbp input). 2. measure vp output pulse width (vpw) according to tp35 output waveform. 3. measure vp pull-in range (vpt0) according to tp35 output waveform. 4. set subaddress (03) data to 01h, 02h, 03h, 04h, 05h, and 06h. measure pull-in range vpt1, vpt2, vpt3, vpt4, vpt5, and vpt6 as in the step 3 above. v02 vertical minimum pull-in range 1. repeat the step 1 of note #v01. 2. input signal f (shown in the figure below) to tp52. 3. increase signal-f cycle from 30 h. measure the cycle (t vpull ) when phase locks with that of tp35. signal f (tp 52 waveform input) t vpull 3h #39 input waveform tp 35 waveform #39 input waveform vpt tp35 waveform vpw signal e (#39 input waveform) 9 v gnd 5.6 s signal d (tp50 input signal) 4 v 2.35 s 29.63 s
TA1360AFG 2005-08-18 103 note characteristics test conditions v03 vertical black peak detection pulse 1. repeat the step 1 of note #v01. set sw70 to c, and sw68 to c. 2. input signal f (shown in the figure below) to tp52. 3. measure phase differences vbpp 0e and vbpp 0s according to #47 output waveform. 4. set subaddress (03) data to 01h, 02h, 03h, 04h, 05h, and 06h. measure phase differences vbpp 1e , vbpp 1s , vbpp 2e , vbpp 2s , vbpp 3e , vbpp 3s , vbpp 4e , vbpp 4s , vbpp 5e , vbpp 5s , vbpp 6e , and vbpp 6s as in the step 3 above. v04 vertical blanking stop phase 1. repeat the step 1 of note #v01. 2. input signal f (shown in the figure below) to tp52. 3. set subaddress (03) data to 00h and f0h. measure blanking stop phase vblk min and vblk max according to #12 output waveform. signal f (tp 52 waveform input) 1125h 3h #39 input waveform #12 input waveform vblk signal f (tp 52 waveform input) 262.5h to 1125h 3h vbpp e vbpp s #39 input waveform #70 waveform
TA1360AFG 2005-08-18 104 figure t-1 signals for text/color difference signal 2 sine wave of frequency f 0 (2) input signal 1 amplitude a (3) input signal 2 (4) input signal 3 sine wave of frequency f 0 63.5 s (1) video signal
TA1360AFG 2005-08-18 105 figure t-2 test pulses for text/color difference signal 2 63.5 s 20 s 20 s 20 s 20 ns 20 ns 50% 0% 10% 50% 90% t pr t pf r f t pr t pf r f 0% 10% 50% 90% 100% 100% (1) input signal 4 (2) (3)
TA1360AFG 2005-08-18 106 test circuit 0.1 f 30 pf 1 f 100 k ? TA1360AFG #64 #58 0.01 f #54 2.2 f 0.1 f #51 0.01 f 49 64 63 61 60 58 56 54 53 51 50 48 46 45 44 43 42 hvco nc afc filter def/dac v cc nc nc scp in hd in nc sync in nc nc color limiter c r2 /p r2 in c b2 /p b2 in y2 in light area det filter 41 h-freq sw2 62 nc 59 nc 57 vsm filter 55 h-freq sw1 52 vd in 47 cp out 0.47 f 100 f #70 #74 65 66 67 68 69 70 71 73 74 75 77 78 79 80 72 76 y s 1 (analog osd) y m /p-mute/blk abcl in vsm out y/c v cc apl filter nc dark area det filter bph filter nc y1 in c b1 /p b1 in c r1 /p r1 in y/c gnd nc #40 1 k ? 1 f 40 39 38 36 35 34 31 30 28 27 26 25 29 32 33 37 analog g in a nalog b in i 2 l gnd sd a scl i 2 l v dd dac1 (sync out) vp out nc def/dac gnd fbp in h curve correction nc nc nc h-out #4 0.01 f 16 1 2 3 4 6 8 10 12 14 15 17 18 19 20 22 24 5 7 9 11 13 21 23 a nalog r in nc nc a nalog osd g in a nalog osd r in nc rgb v cc nc b out r out rgb gnd i k in g s/h r s/h nc y s 3 (analog rgb) y s 2 (analog osd) nc b s/h nc nc g out a nalog osd b in dac2 (acp pulse) v cc (9 v) 3.9 k ? 75 ? 10 f 2 k ? 5.1 k ? tpa 10 f nc #67 a b tp67 #66 0.1 f a b tp66 a b c 0.1 f 0.1 f 0.1 f tp64 #63 b a b a 0.47 f 0.1 f sw64 sw63 0.1 f #61 tp61 a b sw61 0.1 f #60 tp60 a b 0.1 f sw60 #57 #55 100 ? tp55 30 k ? tp53b a b sw input a b #53 #52 100 ? tp52 #50 100 ? tp50 #49 100 ? tp49 #47 100 ? tp47 0.01 f #44 3 k ? 1 f #42 csbla503keczf30 470 ? #41 15 k ? 15 k ? 15 k ? tpb 3.9 k ? 75 ? 10 f 2 k ? 5.1 k ? tpc tpd a b tp71 #71 a b 1 f 2 k ? 20 k ? sw 74 0.01 f #75 sw 77 1 k ? #77 0.01 f #78 100 k ? tp78 #79 #80 100 ? a b sw 40 10 k ? 10 k ? 5.1 k ? 470 ? 470 ? a b tp26 sw 26 0.1 f #26 a b tp25 sw 25 0.1 f #25 tp28 30 k ? tp30 tp35 #28 #30 #31 #34 #35 3.9 k ? sw 37 c a b sw39a c a b sw 39b 0.01 f #6 0.01 f #7 0.01 f #8 300 pf #12 #13 #14 10 k ? 10 k ? 10 k ? 10 k ? 10 k ? 10 k ? 10 k ? 100 ? 100 ? 100 ? 100 f #16 #18 0.1 f a b sw18 tp18 #19 0.1 f a b sw19 tp19 #21 0.1 f a b sw21 tp21 #24 0.1 f a b sw24 tp24 #23 10 k ? 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 tc4538bp 51 k ? 51 k ? 10 f 1000 pf 5.1 k ? 50 k ? 1200 pf 7.5 k ? 50 k ? 45 khz 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 tc4538bp 51 k ? 51 k ? 10 f 1000 pf 5.1 k ? 50 k ? 1200 pf 7.5 k ? 50 k ? 31.5/33.75 khz 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 tc4538bp 51 k ? 51 k ? 10 f 1000 pf 5.1 k ? 50 k ? 1200 pf 7.5 k ? 50 k ? 15.75 kh z v cc (9 v) 470 ? sw53b tp53 sw44 tp44 1 k ? #39 tp40b 2.0 v 1/2w 220 ? 6.8 v 100 f #2 #1 #37 20 k ? sw70 sw68 sw67 sw66 sw 71 tp77
TA1360AFG 2005-08-18 107 application circuit r ou t g ou t b ou t 0.01 f TA1360AFG 0.01 f 2.2 f 100 f 49 64 63 61 60 58 56 54 53 51 50 48 46 45 44 43 42 hvco nc afc filte r def/dac v cc nc nc scp in hd in nc sync in nc nc color limiter c r2 /p r2 in c b2 /p b2 in y2 in light area det filte r 41 h-freq sw2 62 nc 59 nc 57 vsm filte r 55 h-freq sw1 52 vd in 47 cp out 100 f 65 66 67 68 69 70 71 73 74 75 77 78 79 80 72 76 y s 1 (analog osd) y m /p-mute/blk abcl in vsm out y/c v cc apl filter nc dark area det filter bph filter nc y1 in c b1 /p b1 in c r1 /p r1 in y/c gnd nc 40 39 38 36 35 34 31 30 28 27 26 25 29 32 33 37 a nalog g in a nalog b in i 2 l gnd sd a scl i 2 l v dd dac1 (sync out) vp out nc def/dac gnd fbp in h curve correction nc nc nc h-out 0.01 f 16 1 2 3 4 6 8 10 12 14 15 17 18 19 20 22 24 5 7 9 11 13 21 23 a nalog r in nc nc a nalog osd g in a nalog osd r in nc rgb v cc nc b out r out rgb gnd i k in g s/h r s/h nc y s 3 (analog rgb) y s 2 (analog osd) nc b s/h nc nc g out a nalog osd b in dac2 (acp pulse) 2.2 f nc m 0.1 f m 0.1 f v d-in cp-out 0.01 f csbla503keczf30 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? c r1 /p r1 in 0.01 f 0.01 f 100 k ? abcl ym ys1 470 ? 470 ? 470 ? analog b in 0.1 f analog g in 0.1 f sda 30 k ? scl 300 pf 100 ? 100 f 0.1 f 0.1 f 0.1 f 0.1 f 30 k ? 2.0 v 6.8 v 47 h m 0.1 f 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? c b1 /p b1 in y1 in 1 f 0.47 f m 0.01 f 3 k ? a b scp-in hd-in 0.47 f m 0.1 f c b2 /p b2 in 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? m 0.1 f m 0.1 f c r2 /p r2 in 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? y2-in 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? 10 k ? 1 k ? 2.2 f 2.2 f 2.2 f 30 k ? 47 h 100 ? 100 ? sync in 3.9 k ? 75 ? 10 f 1 k ? 5.1 k ? 1 k ? 1.5 k ? 560 ? 0.1 f 47 h vsm out ys2 ys3 ik-in osd r-in osd g-in osd b-in analog r-in dac2-out dac1-out vp-out h-out fbp-in curve corr v cc v cc m : mylar capacitor application of h-freq switching (31.5 k/33.75 k/45 khz) tr. h-freq a b pin 55 voltage pin 41 voltage 31.5 khz l l 9 v 6 v 33.75 khz l h 9 v 3 v 45 khz h * 9 v 0 v * : don?t care 1 f 0.1 f
TA1360AFG 2005-08-18 108 acb application circuit 8 crt b crt g crt r 20~51 k ? 51~330 pf 6.8 v z + b r g b 1 v p-p 0~3.0 v (dc) clamp i k in
TA1360AFG 2005-08-18 109 package dimensions weight: 1.6 g (typ.)
TA1360AFG 2005-08-18 110


▲Up To Search▲   

 
Price & Availability of TA1360AFG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X